Advertisement

Biologia Plantarum

, Volume 11, Issue 2, pp 97–109 | Cite as

Influence of light and darkness on the concentration of lactic, glycolic, succinic, malic and citric acid in pea plants

  • Jana Barthová
  • Sylva Leblová
Article

Abstract

Chromatographic separation of an extract of organic acids on a Dowex-l column in the formiate cycle was used to study the content of several organic acids in pea plants, cultivated either in light or in darkness. Concentration changes of the individual acids in the course of growth indicate that the citrate cycle is blocked in the cotyledons of plants grown in light in the period around the 15th day of growth, probably at the site of succinic dehydrogenase (succinic and lactic acids accumulate and the content of citric and malic acids is exhausted). There is no inhibition in the cotyledons of etiolated plants. In vegetative organs, the concentration of the majority of the acids studied is lower than in cotyledons, probably because synthetic processes prevail over degradation processes in these organs. It seems that other processes besides the citrate cycle participate in malate synthesis in pea plants.

Keywords

Green Plant Vegetative Organ Citrate Cycle Citric Acid Concentration Malate Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Vliv světla a tmy na koncentraci kyseliny mléčné, glykolové, jantarové, jablečné a eitronové v rostlinách hrachu.

Влияние света и темноты на концентрацию молоной, гликолевой, янтарной, яблочной и лимонной кислот в растениях гороха

Abstract

Metodou chromatografického dělení směsi kyselin na sloupei Dowexu-l byly sledovány změny v obsahu organických kyselin v zásobních i vegetativních orgánech rostlin hrachu pěstovaných na světle nebo ve tmě. V dělohách zelených rostlin se kolem 10. až 15. dne růstu hromadí kyseliny jantarová a mléčná, zatímeo klesá obsah kyselin citronové a jablečné. Zdá se, že všechny tyto změny nasvědčují tomu, že je zde blokován citrátový cyklus patrně v místě sukeinátoxidasy. Dělohy etiolovaných rostlin neakumulují žádný z intermediátů cyklu. Ve vegetativních orgánech jak rostlin zelených tak etiolovaných je koncentrace kyselin mnohem nižší, v těchto částech rostlin zřejmě významně převažuje synthesa nad odbouráváním.

Rozdíly v obsahu organických kyselin v dělohách zelených a etiolovaných rostlin mluví pro to, že u rostliny jako celku existuje regulace fotosynthesy a respirace navzájem.

Abstract

Методом хроматографического разделения смеси кислот на колонке Дауэкс-1 исследовались изменения содержания органических кислот в запасных и вегетативных оргнах гороха выращиваемого на свету или в темноте. В семядолях зеленых растений около 10–15 дня роста накопляются янтарная и молочная кислоты, в то время как понижается содержание яблочной и лимннй кислот. Как будто все эти изменения свидетельствуют о том, что здесь блокируется цитратный цикл, вероятно в месте сукцинатоксидазы. Семядоли этиолированных растений не накопляют ни одного из промежуточных продуктов цикла. В вегетативных органах зеленых и этиолированных растений концентрация кислот намного ниже, в этих частях растений очевидно значительно преобладает синтез над распадом.

Различие в содержании органических кислот в семядолях зеленых и этиолиованных растений говорит о том, что в растении как целом существует регуляция фотосинтеза и дыхания, одного в связи с друтим.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsen, A., Mayer, A. M.: Photosynthetic and dark fixation of14CO2 in detached soybean cotyledons.—Physiol. Plant.20: 1–5, 1967.CrossRefGoogle Scholar
  2. Anderson, L., Fuller, R. C.: The rapid appearence of glycolate photosynthesis inRhodospirillum rubrum.— Biochim. biophys. Acta131: 198–200, 1967a.CrossRefGoogle Scholar
  3. Anderson, L., Fuller, R. C.: Photosynthesis inRhodopsirillum rubrum III. Metabolic control of reductive pentose phosphate and tricarboxylic acid cycle enzymes.—Plant Physiol.42: 497–502, 1967b.PubMedGoogle Scholar
  4. Barker, S. B., Summerson, W. H.: The colorimetric determination of lactic acid in biological material.—J. biol. Chem.138: 535–538, 1942.Google Scholar
  5. Barker, J., Mapson, L. W.: Studies in the respiratory and carbohydrate metabolism of plant tissues.—Proc. roy. Soc. B141: 321–338, 1953.Google Scholar
  6. Barker, J., El Saifi, A. F.: Studies in the respiratory metabolism of plant tissues.—Proc. roy. Soc. B140: 385–402, 1952.Google Scholar
  7. Barthová, J., Leblová, S., Koštíř, J.: The influence of light, darkness and changes in CO2 and O2 concentration in the atmosphere on the growth and gas exchange in Pea(Pisum sativum).—Biol Plant.9: 173–181, 1967.Google Scholar
  8. Bidwell, R. G. S., Krotkov, G., Reed, G. B.: The influence of light and darkness on the metabolism of radioactive glucose and glutamin in wheat leaves.—Can. J. Bot.55: 189 to 196, 1955.Google Scholar
  9. Busch, H., Hulbert, R. B., Potter, V. R.: Anion exchange chromatography of acids of the citric acid cycle.—J. biol. Chem.196: 717–727, 1952.PubMedGoogle Scholar
  10. Calkins, V. P.: Microdetermination of glycollate and oxalic acid.—Anal. Chem.15: 762–763, 1943.Google Scholar
  11. Calvin, M.: The pathway of carbon in photosynthesis.—J. Chem. Educ26: 639–657, 1949.CrossRefGoogle Scholar
  12. Cameron, D. S., Cossins, E. A.: Studies of intermediary metabolism of germinating pea cotyledons. The pathway of ethanol metabolism and the role of tricarboxylic acid cycle.—Biochem. J.105: 323–332, 1967.PubMedGoogle Scholar
  13. Davies, D. D.: Organic acid metabolism.—Biol. Rev. Phil. Soc. Cambridge.—34: 407–444, 1959.Google Scholar
  14. Graham, D., Cooper, J. E.: Changes on level of nicotinamide adenin nucleotides and Krebs cycle intermediates in mung bean leaves after illumination.—Austr. J. biol. Sci.20: 319 to 328, 1967.Google Scholar
  15. Graham, D., Walker, D. A.: Some effects of light on the interconversion of metabolites in green leaves.—Biochem. J.82: 534–545, 1962.Google Scholar
  16. Gibbs, M.: Effect of light intensity on the distribution of C14 in sunflower leaf metabolites during photosynthesis.—Arch. Biochem. Biophys.45: 156–160, 1953.PubMedCrossRefGoogle Scholar
  17. Hatch, M. D., Slack, C. R., Johnson, H. S.: Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugarcane and its occurence in other plant species.— Biochem. J.102: 417–422, 1967.PubMedGoogle Scholar
  18. James, W. O., James, L. A.: The respiration of barley germinating in the dark.—New Phytologist39: 145–176, 1940.CrossRefGoogle Scholar
  19. Leblová, S.: Metabolické změny v klíčních rostlinách, hrachu při změně vnějších podmínek. (Metabolic changes in pea seedlings under different environmental conditions.)— Rostlinná výroba12: 1143–1164, 1966.Google Scholar
  20. Marsh, H. V., Galmicke, J. M., Gibbs, M.: Respiration during photosynthesis.—Rec. Chem. Progress25: 259–271, 1964.Google Scholar
  21. Marsh, H. V., Galmicke, J. M., Gibbs, M.: The effect of light on the tricarboxylic acid cycle inScenedesmus.—Plant. Physiol.40: 1013–1022, 1965PubMedCrossRefGoogle Scholar
  22. Milhaud, G., Genson, A. A., Calvin, M.: Metabolism of pyruvic acid-2-C14 and hydroxypyruvic acid-2-C14 in algae.—J. biol. Chem.218: 599–606, 1956.PubMedGoogle Scholar
  23. Payes, B., Laties, G. G.: The inhibition of several tricarboxylic acid cycle enzymes by λ-hydroxy-α-ketoglutarate. —Biochem. biophys. Res. Commun.10: 460–466, 1963.PubMedCrossRefGoogle Scholar
  24. Schneider, A.: The formation of lactic acid in higher plants especially during germination.— Planta32: 234–261, 1940.CrossRefGoogle Scholar
  25. Tubio, S., Kikuchi, G.: Regulation by illumination of the citric acid cycle activity inRhodopseudomonas spheroides.—J. Biochem. (Tokyo)59: 456–462, 1966.Google Scholar
  26. Zelitch, I.: The relation of glycolic acid to the primary photosynthetic carboxylation reaction in leaves.—J. biol. Chem.240: 1869–1880, 1965.PubMedGoogle Scholar

Copyright information

© Institute of Experimental Botany 1969

Authors and Affiliations

  • Jana Barthová
    • 1
  • Sylva Leblová
    • 1
  1. 1.Biochemistry Department, Faculty of SciencesCharles UniversityPraha

Personalised recommendations