Advertisement

Applied Biochemistry and Biotechnology

, Volume 37, Issue 2, pp 97–110 | Cite as

In vitro stabilization of acv synthetase activity fromStreptomyces clavuligerus

  • Jinyou Zhang
  • Arnold L. Demain
Article

Abstract

ACV synthetase (ACVS) fromStreptomyces clavuligerus is very labile. The study and in vitro application of this important enzyme for cephamycin biosynthesis requires a relatively stable preparation. The stability of the crude enzyme was substantially increased by dithio-threitol and the cofactor, magnesium (Mg2+). The purified enzyme was also unstable and especially sensitive to moderate to high temperature. Addition of the substrate L-valine (L-val) along with the cofactors (ATP and MG2+) raised the thermal inactivation temperature, and increased the stability of the enzyme at low temperature. Amino acids capable of replacing L-val as ACVS substrate generally stabilized the enzyme. The ACVS level remained high during fermentation in a complex medium containing high concentrations of amino acids, in contrast to the situation in chemically-defined medium.

Index Entries

Streptomyces clavuligerus cephamycin ACV synthetase stability stabilization L-valine fermentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Demain, A. L. and Wolfe, S. (1987),Devel. Ind. Microbiol.27, 175–182.Google Scholar
  2. 2.
    Malmberg, L. H. and Hu, W.-S. (1990), inAbstr. 200th ACS National Meeting. Division of Biochemical Technology, American Chemical Society, Washington, DC.Google Scholar
  3. 3.
    Zhang, J. and Demain, A. L. (1990),Biochem. Biophys. Res. Commun. 169, 1145–1152.CrossRefGoogle Scholar
  4. 4.
    Banko, G., Wolfe, S., and Demain, A. L. (1986),Biochem. Biophys. Res. Commun. 137, 528–535.CrossRefGoogle Scholar
  5. 5.
    Banko, G., Demain, A. L., and Wolfe, S. (1987),J. Amer. Chem. Soc. 109, 2858–2860.CrossRefGoogle Scholar
  6. 6.
    Jensen, S. E., Westlake, D. W. S., and Wolfe, S. (1988),FEMS Microbiol. Lett. 49, 213–218.Google Scholar
  7. 7.
    Zhang, J. and Demain, A. L. (1990),Biotechnol. Lett. 12, 649–654.CrossRefGoogle Scholar
  8. 8.
    Jensen, S. E., Wong, A., Rollins, M. J., and Westlake, D. W. S. (1990),J. Bacteriol. 172, 7269–7271.Google Scholar
  9. 9.
    Aharonowitz, Y. and Demain, A. L. (1979),Can. J. Microbiol. 25, 61–67.CrossRefGoogle Scholar
  10. 10.
    Jensen, S. E., Leskiw, B. K., Vining, L. C, Aharonowitz, Y., and Westlake, D. W. S. (1986),Can. J. Microbiol. 32, 953–958.CrossRefGoogle Scholar
  11. 11.
    Bradford, M. M. (1976),Analyt. Biochem. 12, 248–254.CrossRefGoogle Scholar
  12. 12.
    Zhang, J. and Demain, A. L. (1992), Arch. Microbiol. 158, in press.Google Scholar
  13. 13.
    Scopes, R. K. (1987),Protein Purification, Principles and Practice, Springer- Verlag, New York, pp. 246–252.Google Scholar
  14. 14.
    Goldberg, A. L. and Dice, J. F. (1974),Annu. Rev. Biochem. 43, 835–869.CrossRefGoogle Scholar
  15. 15.
    Vitkovic, L. and Pfaender, P. (1982), inPeptide Antibiotics, Biosynthesis and Functions, Kleinkauf, H., and von Dohren, H., eds., Walter de Gruyter, Berlin, pp. 297–306.Google Scholar
  16. 16.
    Wolfe, S., Demain, A. L., Jensen, S. E., and Westlake, D. W. S. (1984),Science 226, 1386–1392.CrossRefGoogle Scholar
  17. 17.
    Zhang, J. (1991)ACV synthetase in cephalosporin biosynthesis, PhD. Thesis, Massachusetts Institute of Technology, Cambridge, MA 02139.Google Scholar
  18. 18.
    Agathos, S. N. and Demain, A. L. (1986),Enzyme Microb. Technol. 8, 465–468.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • Jinyou Zhang
    • 1
  • Arnold L. Demain
    • 1
  1. 1.Fermentation Microbiology Laboratory, Department of BiologyMassachusetts Institute of TechnologyCambridge

Personalised recommendations