Properties and engineering of a mutantSTA promoter ofSaccharomyces diastaticus

  • George Bajszár
  • Jon Croonenberghs
  • Irina L. Karnushina
  • Sun Y. Lee
  • James R. Mattoon


A new allelic variant of theSTA2 gene ofS. diastaticus, designated asSTA2 K, was cloned and characterized (1; accompanying paper). An application-oriented analysis of the promoter region ofSTA2 K is described, with an emphasis on its peculiar structural feature: A 1.1-kb natural deletion located 189 nucleotides upstream of the translation start codon.

The strength of theSTA2 K promoter was found comparable to that of known strong constitutive yeast promoters(ADH1, GAPDH). Regulated glucoamylase expression was demonstrated by chimeric promoters, which were constructed by placing theSTA2 K promoter under the control of either thePH05 orCYC1 upstream regulatory sequences. On high-copy-number vectors, induction of the UASpho5-STA2K chimeric promoter by phosphate depletion resulted in a destructive overexpression of the secreted glucoamylase, which completely halted cell growth, and promoted cell decay. In contrast, UAScyc1 was shown to mediate a fine-tuned regulation both by glucose concentration and, indirectly, by starch, the substrate for the glucoamylase to produce glucose.

Index Entries

Yeast glucoamylase promoter, gene expression STA genes Upstream Regulatory Sequences UAS PH05 CYC1 


  1. 1.
    Kim, K., Bajszár, G., Lee, S. Y., Knudsen, F., and Mattoon, J. R. (1992),Appl. Biochem. Biotech, (submitted, accompanying paper)Google Scholar
  2. 2.
    Yamashita, I. and Fukui, S. (1984),Agric. Biol. Chem. 48, 131.Google Scholar
  3. 3.
    Pardo, J. M., Polaina, J., and Jiménez, A. (1986),Nucleic Acids Res. 14, 4701.CrossRefGoogle Scholar
  4. 4.
    Pretorius, I. S., Chow, T., Modena, D., and Marmur, J. (1986),Mol. Gen. Genet. 203, 29.CrossRefGoogle Scholar
  5. 5.
    Pretorius, I. S., Lambrechts, M. G., and Marmur, J. (1991),Crit. Rev. Biochem. Molec. Biol. 26, 53.CrossRefGoogle Scholar
  6. 6.
    Yamashita, I., Suzuki, K. and Fukui, S. (1985),J. Bacteriol. 161, 567.Google Scholar
  7. 7.
    Lambrechts, M. G., Pretorius, I. S., Sollitti, P., and Marmur, J. (1991),Gene 100, 95.CrossRefGoogle Scholar
  8. 8.
    Pretorius, I. S., and Marmur, J. (1988),Curr. Genet. 14, 9.CrossRefGoogle Scholar
  9. 9.
    Shima, H., Inoui, M., Akada, R., and Yamashita, I. (1989),Agric. Biol. Chem. 53, 749.Google Scholar
  10. 10.
    Nakamura, M., Matsumoto, T., Noguchi, M., Yamashita, I., and Noma, M. (1990),Gene 89, 231.CrossRefGoogle Scholar
  11. 11.
    Rose, M. D., Novick, P., Thomas, J. H., Botstein, D., and Fink, G. R. (1987),Gene 60, 237.CrossRefGoogle Scholar
  12. 12.
    Inoue, H., Nojima, H., and Okayama, H. (1990),Gene 96, 23.CrossRefGoogle Scholar
  13. 13.
    Finlayson, S. D., Fleming, C., Berry, D. R., and Johnston, J. R. (1991),Biotechnol. Tech. 5, 13.CrossRefGoogle Scholar
  14. 14.
    Delorme, E. (1989),Appl. Environ. Microbiol. 55, 2242.Google Scholar
  15. 15.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989),Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  16. 16.
    Sanger, F., Nicklen, S., and Coulson, A. R. (1977),Proc. Natl. Acad. Sci. USA 74, 5463.CrossRefGoogle Scholar
  17. 17.
    Chen, E. Y. and Seeburg, P. H. (1985),DNA 4, 165.CrossRefGoogle Scholar
  18. 18.
    Toh-e, A., Ueda, Y., Kakimoto, S., and Oshima, T. (1973),J. Bacteriol. 113, 727.Google Scholar
  19. 19.
    Zvonok, N. M., Horváth, E., and Bajszár, G. (1988),Gene 66, 313.CrossRefGoogle Scholar
  20. 20.
    Tuite, M. F., Bossier, P., and Fitch, I. T. (1988),Nucleic Acids Res. 16, 11845.CrossRefGoogle Scholar
  21. 21.
    Mcknight, S. L. and Kingsbury, R. (1982),Science 217, 316.CrossRefGoogle Scholar
  22. 22.
    Sidhu, R. S. and Bollon, A. P. (1990),Yeast 6, 221.CrossRefGoogle Scholar
  23. 23.
    Rudolph, H. and Hinnen, A. (1987),Proc. Natl. Acad. Sci. USA 84, 1340.CrossRefGoogle Scholar
  24. 24.
    Sengstag, C. and Hinnen, A. (1988),Gene 67, 223.CrossRefGoogle Scholar
  25. 25.
    Guarente, L. and Mason, T. (1983),Cell 32, 1279.CrossRefGoogle Scholar
  26. 26.
    Guarente, L., Lalonde, B., Gifford, P., and Alani, E. (1984),Cell 36, 503.CrossRefGoogle Scholar
  27. 27.
    Beggs, J. D. (1981), inMolecular Genetics in Yeast, von Wettstein, D., Friis, J., Kielland-Brandt, M., and Stenderup, A., eds., Munksgaard, Copenhagen, pp. 383–389.Google Scholar
  28. 28.
    Janes, M., Meyhack, B., and Hinnen, A. (1988),Yeast E4, 441.Google Scholar
  29. 29.
    Pretorius, I. S., Modena, D., Vanoni, M., Englard, S., and Marmur, J. (1986),Mol. Cell. Biol. 6, 36.Google Scholar
  30. 30.
    Polaina, J. and Wiggs, M. Y. (1983),Curr. Genet. 7, 109.CrossRefGoogle Scholar
  31. 31.
    Yamashita, I. Takano, Y., and Fukui, S. (1985),J. Bacteriol. 164, 769.Google Scholar
  32. 32.
    Miller, A. M., MacKay, V. L., and Nasmyth, K. A. (1985),Nature 314, 598.CrossRefGoogle Scholar
  33. 33.
    Verdire, J.-M. (1990),Yeast 6, 291.Google Scholar
  34. 34.
    Yamashita, I., Nakamura, M., and Fukui, S. (1987),J. Bacteriol. 169, 2142.Google Scholar
  35. 35.
    Janes, M., Meyhack, B., Zimmerman, W., and Hinnen, A. (1990),Curr. Genet. 18, 97.CrossRefGoogle Scholar
  36. 36.
    Laluce, C. and Mattoon, J. R. (1984),Appl. Environ. Microbiol. 48, 17.Google Scholar

Copyright information

© Humana Press Inc 1994

Authors and Affiliations

  • George Bajszár
    • 1
  • Jon Croonenberghs
    • 2
  • Irina L. Karnushina
    • 1
  • Sun Y. Lee
    • 2
  • James R. Mattoon
    • 1
  1. 1.Biotechnology CenterUniversity of Colorado at Colorado SpringsColorado Springs
  2. 2.Coors Brewing Co.Golden

Personalised recommendations