Molecular Biotechnology

, Volume 4, Issue 2, pp 111–119 | Cite as

A New method for designing PCR primers specific for groups of sequences and its application to plant viruses

  • John Antoniw


A new method is described for identifying short regions of sequence similarity in a group of selected sequences. These regions have been used for the design of both specific and degenerate PCR primers for the detection of groups of plant viruses, but the method has wider applications. The method is an extension of the GCG programs COMPARE and DOTPLOT, so the name “dot primers” is suggested as a generic term for primers designed in this way. The method described is more direct and more efficient than current methods that use sequence alignment algorithms.

Index Entries

PCR primers plant viruses sequence similarity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Puchta, H. and Sanger, H. L. (1989) Sequence analysis of minute amounts of viroid RNA using the polymerase chain reaction (PCR).Arch. Virol. 106, 335–340.CrossRefGoogle Scholar
  2. 2.
    Vunsh, R., Rosner, A., and Stein, A. (1990) The use of the polymerase chain reaction (PCR) for the detection of bean yellow mosaic virus in gladiolus.Ann. Appl. Biol. 117, 561–569.CrossRefGoogle Scholar
  3. 3.
    Gilbertson, R. L., Rojas, M. R., Russell, D. R., and Maxwell, D. P. (1991) Use of the asymmetric polymerase chain reaction and DNA sequencing to determine genetic variability of bean golden mosaic geminivirus in the Dominican Republic.J. Gen. Virol. 72, 2843–2848.CrossRefGoogle Scholar
  4. 4.
    Wetzel, T., Candresse, T., Ravelonandro, M., and Dunez, J. (1991) A polymerase chain reaction assay adapted to plum pox potyvirus detection.J. Virol. Methods 33, 355–365.CrossRefGoogle Scholar
  5. 5.
    Navot, N., Zeidan, M., Pichersky, E., Zamir, D., and Czosnek, H. (1992) Use of the polymerase chain reaction to amplify tomato yellow leaf curl virus DNA from infected plants and viruliferous whiteflies.Phytopathology 82(10), 1199–1202.CrossRefGoogle Scholar
  6. 6.
    Briddon, R. W., Prescott, A. G., Lunness, P., Chamberlin, L. C. L., and Markham, P. G. (1993) Rapid production of full-length, infectious geminivirus clones by abutting primer PCR (AbP-PCR).J. Virol. Methods 43, 7–20.CrossRefGoogle Scholar
  7. 7.
    Schenk, P., Antoniw, J. F., Batista, M. de F., Jacobi, V., Adams, M. J., and Steinbiss, H.-H. (1995) Movement of barley mild mosaic virus in leaves and roots of barley.Ann. Appl. Biol.,126, 291–305.CrossRefGoogle Scholar
  8. 8.
    Rybicki, E. P. and Hughes, F. L. (1990) Detection and typing of maize streak virus and other distantly related geminiviruses of grasses by polymerase chain reaction amplification of a conserved viral sequence.J. Gen. Virol. 71, 2519–2526.CrossRefGoogle Scholar
  9. 9.
    Rojas, M. R., Gilbertson, R. L., Russell, D. R., and Maxwell, D. P. (1993) Use of degenerate primers in the polymerase chain reaction to detect whiteflytransmitted geminiviruses.Plant Dis. 77(4), 340–347.Google Scholar
  10. 10.
    Briddon, R. W. and Markham, P. G. (1994) Universal primers for the PCR amplification of dicot-infecting geminiviruses.Mol. Biotechnol. 1, 202–205.CrossRefGoogle Scholar
  11. 11.
    Robertson, N. L., French, R., and Gray, S. M. (1991) Use of group-specific primers and the polymerase chain reaction for the detection and identification of luteoviruses.J. Gen. Virol 72, 1473–1477.CrossRefGoogle Scholar
  12. 12.
    Langeveld, S. A., Dore, J.-M., Memelink, J., Derks, A. F. L. M., Vlugt, C. I. M., Asjes, C. J., and Bol, J. F. (1991) Identification of potyviruses using the polymerase chain reaction with degenerate primers.J. Gen. Virol. 72, 1531–1541.CrossRefGoogle Scholar
  13. 13.
    Pappu, S. S., Brand, R., Pappu, H. R., Rybicki, E. P., Gough, K. H., Frenkel, M. J., and Niblett, C. L. (1993) A polymerase chain reaction method adapted for selective amplification and cloning of 3’ sequences of potyviral genomes: application to dasheen mosaic virus.J. Virol. Methods 41, 9–20.CrossRefGoogle Scholar
  14. 14.
    Karasev, A. V., Nikolaeva, O. V., Koonin, E. V., Gumpf, D. J., and Garnsey, S. M. (1994) Screening of the closteroviras genome by degenerate primermediated polymerase chain reaction.J. Gen. Virol. 75, 1415–1422.CrossRefGoogle Scholar
  15. 15.
    Devereux, J., Haeberli, P., and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids Res. 12, 387–395.CrossRefGoogle Scholar
  16. 16.
    Wisconsin Sequence Analysis Package Program Manual, version 8 (1994).Google Scholar
  17. 17.
    Rychlik, W., Spencer, W. J., and Rhoads, R. E. (1990) Optimization of the annealing temperature for DNA amplification in vitro.Nucleic Acids Res. 18(21), 6409–6412;Nucleic Acids Res. 19(3), 698. (correction).CrossRefGoogle Scholar
  18. 18.
    Chen, Z.-C., Antoniw, J. F., and White, R. F. (1993) A possible mechanism for the antiviral activity of pokeweed antiviral protein.Physiol. Mol. Plant Pathol. 42, 249–258.CrossRefGoogle Scholar
  19. 19.
    Antoniw, J. F. (1992) Plant virus sequences in the EMBL and GenBank nucleotide sequence databases.Binary 4, 169–174.Google Scholar
  20. 20.
    Cornish-Bowden, A. (1985) Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984.Nucleic Acids Res. 13(9), 3021–3030.CrossRefGoogle Scholar
  21. 21.
    Maizel, J. V. and Lenk, R. P. (1981) Enhanced graphic matrix of nucleic acid and protein sequences.Proc. Natl. Acad. Sci. USA 78(12), 7665–7669.CrossRefGoogle Scholar
  22. 22.
    Wilbur, W. J. and Lipman, D. J. (1983) Rapid similarity searches of nucleic acid and protein data banks.Proc. Natl. Acad. Sci. USA 80, 726–730.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  1. 1.Plant Pathology DepartmentIACR-RotharastedHarpendenUK

Personalised recommendations