Advertisement

Stabilization ofd-amino acid oxidase from yeastTrigonopsis variabilis used for production of glutaryl-7-aminocephalosporanic acid from cephalosporin C

  • Estera Szwajcer Dey
  • Susanne Flygare
  • Klaus Mosbach
Article

Abstract

The studies to improve the production of glutaryl-7-ACA from cephalosporin C are described in this paper.

During the conversion of cephalosporin C to keto-adipyl-7-aminocephalosporonic acid by d-amino acid oxidase (d-AAO), with the simultaneous production of equimolar amount of hydrogen peroxide, an incomplete nonenzymatic conversion of the keto form into the glutaryl form occurs, where cephalosporin C as well asd-AAO are partly destroyed in the presence of hydrogen peroxide.

d-AAO was immobilized to different carriers in order to achieve better enzyme stability. The activity of immobilizedd-AAO on manganese oxide remained above 100% during the first 9 h of a semicontinuous conversion of cephalosporin C. The presence of catalase coimmobilized with D-AAO and coupled to CNBr-activated Sepharose 4B improved the operation stability ofd-AAO.

An additional approach for the continuous transformation of cephalosporin C used whole cells ofTrigonopsis variabilis, containingd-AAO, immobilized to magnetic iron oxide particles.

Index Entries

Immobilizedd-amino acid oxidase production of glutaryl-7-ACA production of 7-ACA stabilization ofd-amino acid oxidase stabilization of cephalosporin C 

Abbreviations

PMSF

phenylmethylsulfonyl fluoride

2,4-DNPH

2,4-dinitrophenylhydrazine

D-AAO

D-amino acid oxidase

PEG

polyethylene glycol

CPG

controlled pore glass

References

  1. 1.
    Fildes, R. A., Potts, J. R., and Farthing, J. E. (1974). United States Patent 3,801,458.Google Scholar
  2. 2.
    Bergström, J., Fürst, P., Josephson, B., and Noree, L.-O. (1972),Nutr. Metabol. 14, Suppl., pp. 162–170.CrossRefGoogle Scholar
  3. 3.
    Brodelius, P., Nilsson, K., and Mosbach, K. (1981),Appl. Biochem. Biotechnol. 6, 293.CrossRefGoogle Scholar
  4. 4.
    Szwajcer, E., Brodelius, P., and Mosbach, K. (1982),Enzyme Microb. Technol. 4, 409.CrossRefGoogle Scholar
  5. 5.
    Wikström, P., Szwajcer, E., Brodelius, P., Nilsson, K., and Mosbach, K. (1982),Biotechnol. Lett. 4, 153.CrossRefGoogle Scholar
  6. 6.
    Kubicek-Pranz, E. M., and Röhr, M., (1985),Biotechnol. Lett. 7, 9.CrossRefGoogle Scholar
  7. 7.
    Deshphande, A., Sanicaran, K., D’Souza, S. F., and Nadkarani, G. B. (1987),Biotechnol. Techniques 1, 55.CrossRefGoogle Scholar
  8. 8.
    Szwajcer, E. and Mosbach, K. (1985),Biotechnol. Lett. 7, 1.CrossRefGoogle Scholar
  9. 9.
    Cuatrecasas, P., Wilchek, M., and Anfinsen, C. B. (1968),Proc. Natl. Acad. Sci. USA 61, 636.CrossRefGoogle Scholar
  10. 10.
    Nilsson, K. and Mosbach, K. (1981),Biochem. Biophys. Res. Commun. 102, 449.CrossRefGoogle Scholar
  11. 11.
    Miller, A. W. and Robyt, J. F. (1983),Biotechnol. Bioeng. 25, 2795.CrossRefGoogle Scholar
  12. 12.
    Duvnjak, Z. and Lilly, M. D. (1976),Biotechnol. Bioeng. 18, 737.CrossRefGoogle Scholar
  13. 13.
    Szwajcer Dey, E., Miller, J., Kovacevic, S., and Mosbach, K. (1990), accepted for publication in “Biochemistry International.”Google Scholar
  14. 14.
    Alberti, B. N. and Klibanov, A. M. (1982),Enzyme Microb. Technol. 4, 47.CrossRefGoogle Scholar
  15. 15.
    Aldercreutz, P. and Mattiasson, B. (1984),Enzyme Microb. Technol. 20, 296.Google Scholar
  16. 16.
    Flygare, S. and Larsson, P.-O. (1987),Enzyme Microb. Technol. 9, 494.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Estera Szwajcer Dey
    • 1
  • Susanne Flygare
    • 2
  • Klaus Mosbach
    • 2
  1. 1.Carlsberg Research LaboratoryGamle Carlsberg Vej 10ValbyDenmark
  2. 2.Department of Pure and Applied Biochemistry, Chemical CenterUniversity of LundLundSweden

Personalised recommendations