Advertisement

Applied Biochemistry and Biotechnology

, Volume 27, Issue 1, pp 65–74 | Cite as

Electrofusion of an industrial Baker’s yeast strain with a sour dough yeast

  • T. H. Aarisio
  • M. L. Suihko
Article

Abstract

A method for hybridization of yeast protoplasts ofSaccharomyces cerevisiae andCandida holmii by electrofusion was optimized. The hybrids were screened on maltose-acetate agar plates. The average fusion frequency was 1.1xl0-3. Two hybrids of 132 collected from selection plates were found to be stable over 15 sequential shake flask cultivations. However, the strains reverted during production of baker’s yeast in a laboratory scale process imitating the industrial process.

Index Entries

Electrofusion baker’s yeast sour dough yeast acetic acid tolerance Saccharomyces cerevisiae Candida holmii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Solingen, P. and van der Plaat, J. B. (1977),J. Bacteriol. 130, 946, 947.Google Scholar
  2. 2.
    Ferenczy, L. and Maraz, A. (1977),Nature 268, 524, 525.CrossRefGoogle Scholar
  3. 3.
    Seki, T., Myoga, S., Limtong, S., Uedono, S., Kumnuanta, J., and Taguchi, H. (1983),Biotechnol. Lett. 5, 351–356.CrossRefGoogle Scholar
  4. 4.
    Johansson,M. and Sjöström, J. E. (1984),Appl. Microbiol. Biotechnol. 20, 105–110.CrossRefGoogle Scholar
  5. 5.
    Bortol, A., Nudel, C., Fraile, E., de Torres, R., Giulietti, A., Spencer, J. F. T., and Spencer, D. (1986),Appl. Microbiol. Biotechnol. 24, 414–416.CrossRefGoogle Scholar
  6. 6.
    De Figueroa, L. I., de Richard, M. F., and de van Broock, M. R. (1984a),Biotechnol. Lett. 6, 269–274.CrossRefGoogle Scholar
  7. 7.
    De Figueroa, L. I., de Richard, M. F., and de van Broock, M. R. (1984b),Biotechnol. Lett. 6, 587–592.CrossRefGoogle Scholar
  8. 8.
    De Figueroa, L. I., de Cabada, M. A., and de van Broock, M. R. (1985),Biotechnol. Lett. 7, 837–840.CrossRefGoogle Scholar
  9. 9.
    Skala, J., Luty, J., and Kotylak, Z. (1988),Curr. Genet. 13, 101–104.CrossRefGoogle Scholar
  10. 10.
    Legmann, R. and Margalith, P. (1983),Eur. J. Appl. Microbiol. Biotechnol. 18, 320–322.CrossRefGoogle Scholar
  11. 11.
    Russell, I. and Stewart, G. G. (1979),J. Inst. Brew. 85, 95–98.Google Scholar
  12. 12.
    Skatrud, P. L., Jaeck, D. M., Kot, E. J., and Helbert, J. R. (1980),J. Am. Soc. Brew. Chem. 38, 49–53.Google Scholar
  13. 13.
    Brigidi, P., Matteuzzi, D., and Fava, F. (1988),Appl. Microbiol. Biotechnol. 28, 268–271.CrossRefGoogle Scholar
  14. 14.
    Kim, Y. H. and Seu, J. H. (1985),Kor. J. Appl. Microbiol. Bioeng. 13, 383–389.Google Scholar
  15. 15.
    Perez, C., Vallin, C., and Benitez, J. (1984),Curr. Genet. 8, 575–580.CrossRefGoogle Scholar
  16. 16.
    Taya, M., Honda, H., and Kobayashi, T. (1984),Agric. Biol. Chem. 48, 2239–2243.Google Scholar
  17. 17.
    Farahnak, F., Seki, T., Ryu, D. D. Y., and Ogrydziak, D. (1986),Appl. Environ. Microbiol. 51, 362–367.Google Scholar
  18. 18.
    Pina, A., Calderon, I. L., and Benitez, T. (1986),Appl. Environ. Microbiol. 51, 995–1003.Google Scholar
  19. 19.
    Russell, I. and Stewart, G. G. (1985),MBAA Tech. Quart. 22, 142–148.Google Scholar
  20. 20.
    Sakai, T., Koo, K.-I., Saitoh, K., and Katsuragi, T. (1986),Agric. Biol. Chem. 50, 297–306.Google Scholar
  21. 21.
    Clark, T., Wedlock, N., James, A. P., Deverell, K., and Thornton, R. J. (1986),Biotechnol. Lett. 8, 801–806.CrossRefGoogle Scholar
  22. 22.
    Johannsen, E., Eagle, L., and Bredenhann, G. (1985),Curr. Genet. 9, 313–319.CrossRefGoogle Scholar
  23. 23.
    Gupthar, A. S. and Garnett, H. M. (1987),Curr. Genet. 12, 199–204.CrossRefGoogle Scholar
  24. 24.
    Windisch, S. and Schubert, B. A. (1973),Gordian 73, 288–293.Google Scholar
  25. 25.
    Clement, P. and Loiez, A. (1983), Pat. US 4,396,632.Google Scholar
  26. 26.
    Nakatomi, Y., Saito, H., Nagashima, A., and Umeda, F. (1985), Pat. US 4,547,374.Google Scholar
  27. 27.
    Kanegafuchi-Chem. (1988),Pat. JP 63294778.Google Scholar
  28. 28.
    Zimmermann, U. (1982),Biochim. Biophys. Acta 694, 227–277.Google Scholar
  29. 29.
    Halfmann, H. J., Rocken, W., Emeis, C. C., and Zimmermann, U. (1982),Curr. Genet. 6, 25–28.CrossRefGoogle Scholar
  30. 30.
    Halfmann, H. J., Emeis, C. C., and Zimmermann, U. (1983),Arch. Microbiol. 134, 1–4.CrossRefGoogle Scholar
  31. 31.
    Schnettler, R., Zimmermann, U., and Emeis, C. C. (1984),FEMS Microbiol. Lett. 24, 81–85.CrossRefGoogle Scholar
  32. 32.
    Schnettler, R. and Zimmermann, U. (1985),FEMS Microbiol. Lett. 27, 195–198.CrossRefGoogle Scholar
  33. 33.
    Forster, E. and Emeis, C. C. (1985),FEMS Microbiol. Lett. 26, 65–69.CrossRefGoogle Scholar
  34. 34.
    Tsoneva, I., Doinov, P., and Dimitrov, D. S. (1989),FEMS Microbiol. Lett. 60, 61–66.CrossRefGoogle Scholar
  35. 35.
    Suihko, M.L. and Makinen, V. (1984),Food Microbiol. 1, 105–110.Google Scholar
  36. 36.
    Aarnio, T. H. (1989), Lie. Tech. Thesis, Helsinki University of Technology, Espoo, Finland.Google Scholar
  37. 37.
    Penttilä, M. E., Suihko, M.L., Lehtinen, U., Nikkola, M., and Knowles, J. K. C. (1987),Curr. Genet. 12, 413–420.CrossRefGoogle Scholar
  38. 38.
    Suihko, M.L. (1975), Lie. Phil. Thesis, University of Helsinki, Helsinki, Finland.Google Scholar
  39. 39.
    Zimmermann, U. and Scheurich, P. (1981),Planta 151, 26–32.CrossRefGoogle Scholar
  40. 40.
    Zachrisson, A. and Bornman, C. H. (1984),Physiol. Plant. 61, 314–320.CrossRefGoogle Scholar
  41. 41.
    Zachrisson, A. and Bornman, C. H. (1986),Physiol. Plant. 67, 507–516.CrossRefGoogle Scholar
  42. 42.
    Weaver, J. C., Harrison, G. I., Bliss, J. G., Mourant, J. R., and Powell, K. T. (1988),FEBS Lett. 229, 30–34.CrossRefGoogle Scholar
  43. 43.
    Chassy, B. M., Mercenier, A., and Flickinger, J. (1988),Trends Biotechnol. 6, 303–309.CrossRefGoogle Scholar
  44. 44.
    Powell, I. B., Achen, M. G., Hillier, A. J., and Davidson, B. E. (1988),Appl. Environ. Microbiol. 54, 655–660.Google Scholar
  45. 45.
    Mclntyre, D. and Harlander, S. K. (1989a),Appl. Environ. Microbiol. 55, 604–610.Google Scholar
  46. 46.
    Mclntyre, D. A. and Harlander, S. K. (1989b),Appl. Environ. Microbiol. 55, 2621–2626.Google Scholar
  47. 47.
    Scott, P. T. and Rood, J. I. (1989),Gene 82, 327–333.CrossRefGoogle Scholar
  48. 48.
    Karube, I., Tamiya, E., and Matsuoka, H. (1985),FEBS Lett. 182, 90–94.CrossRefGoogle Scholar
  49. 49.
    Hashimoto, H., Morikawa, H., Yamada, Y., and Kimura, A. (1985),Appl. Microbiol. Biotechnol. 21, 336–339.CrossRefGoogle Scholar
  50. 50.
    Delorme, E. (1989),Appl. Environ. Microbiol. 55, 2242–2246.Google Scholar
  51. 51.
    De Figueroa, L. I. C. and de van Broock, M. R. G. (1985),Appl. Microbiol. Biotechnol. 21, 206–209.CrossRefGoogle Scholar
  52. 52.
    Windisch, S., Kowalski, S., and Zander, I. (1976),Eur. ]. Appl. Microbiol. 3, 213–221.CrossRefGoogle Scholar
  53. 53.
    Panchal, C. J., Bilinski, C. A., Russell, I., and Stewart, G. G. (1986),CRC Crit. Rev. Biotechnol. 4, 253–262.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • T. H. Aarisio
    • 1
  • M. L. Suihko
    • 1
  1. 1.VTTBiotechnical LaboratoryFinland

Personalised recommendations