Applied Biochemistry and Biotechnology

, Volume 27, Issue 1, pp 37–43 | Cite as

Immobilized sucrose phosphorylase fromLeuconostoc mesenteroides

  • M. C. B. Pimentel
  • M. S. S. Ferreira


Sucrose phosphorylase fromLeuconostoc mesenteroides was immobilbilized by covalent linkage to several supports, and the specific activity recovery was 2-11%. The enzyme adsorbed onto DEAE-cellulose re tained about 18% specific activity and was stable over eight months. The optimum pH (7.0) and temperature (30°C) did not change after immobilization. Also there was no improvement of thermal stability, and Km for sucrose and phosphate was lower compared to the soluble enzyme.

Index Entries

Immobilization immobilization sucrose phosphorylase DEAE-cellulose adsorption Leuconostoc mesenteroides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doudoroff, M. (1955), inMethods in Enzymology, 1, Colowick, S. P. and Kaplan, N. O. eds., Academic, New York, pp. 225–229.CrossRefGoogle Scholar
  2. 2.
    Weimberg, R. and Doudoroff, M. (1954),J. Bacteriol. 68, 381–388.CrossRefGoogle Scholar
  3. 3.
    Silverstein, Richard, Voet, Judith, Reed, Dan, and Abeles, Robert H. (1960),J. Biol. Chem. 242, 1338–1346.Google Scholar
  4. 4.
    Vandamme, E. J., Van Loo, J., and De Laporte, A. (1987),Biotechnol. Bioeng. 29, 8–15.CrossRefGoogle Scholar
  5. 5.
    Vandamme, E. J., Van Loo, J., Simkens, E., and De Laporte, A. (1987),J. Chem. Tech. Biotechnol. 39, 251–262.Google Scholar
  6. 6.
    Birberg, Paul R. and Brener, Mark L. (1984),Anal. Biochem. 142, 556–561.CrossRefGoogle Scholar
  7. 7.
    Barker, A. S. and Somers, P. J. (1980), inTopics in Enzyme and Fermentation Biotechnology 2, Alan Wiseman ed., Ellis Horwood Limited, Chichester, pp. 120–151.Google Scholar
  8. 8.
    Kelley, Susan J. and Butler, Larry G. (1980),Biotechnol. Bioeng. 22, 1501–1507.CrossRefGoogle Scholar
  9. 9.
    Dourat-Larroque, Silvia, Hammar, Lena, and Whelan, William J. (1982),J. Appl. Biochem. 4, 133–152.Google Scholar
  10. 10.
    Vandamme, E. J., Van Loo, J., Machtelinckx, L., and De Laporte, A. (1987), inAdvances in Applied Microbiology 32, Laskin, Allen I. ed., Academic, New York, pp. 163–201.Google Scholar
  11. 11.
    Ferreira, M. S. S. (1979), Ph. D. thesis.Studies on Glucose Isomerase, University of St. Andrews, Scotland.Google Scholar
  12. 12.
    Carvalho L. B., Melo, E. H. M., Vasconcelos, A. R. A., and Lira, R. R. (1986),Arg. Biol. Tecnol. 9, 525–531.Google Scholar
  13. 13.
    Mitz, M. and Sumaria, L. (1961),Nature 184, 576, 577.CrossRefGoogle Scholar
  14. 14.
    Crook, E. M., Brocklehurst, K., and Wharton, C. M. (1970), inMethods in Enzymology 19, Colowick, S. P. and Kaplan, N. O. eds., Academic, New York, pp. 973–978.Google Scholar
  15. 15.
    Fiske, C. H. and Subbarow, Y. (1925),J. Biol. Chem. 66, 375.Google Scholar
  16. 16.
    Waddel, W. J. (1956),J. Lab. Clin. Med. 48, 311–314.Google Scholar
  17. 17.
    Hofstee, B. H. J. (1959),Nature 184, 1296–1298.CrossRefGoogle Scholar
  18. 18.
    Grazi, E. and Trombeta, G. (1977),J. Molec. Catal. 2, 153–158.CrossRefGoogle Scholar
  19. 19.
    Taylor, F., Chen, Lifu, Gong, Cheng Shung, and Tsao, G. T. (1982),Biotech nol. Bioeng. 24(2), 317–328.CrossRefGoogle Scholar
  20. 20.
    Madyastha, K. M., Ganguli, A. R., Kubair, V. G., Kowser, N., and Vidya, D. (1987),Biotechnol. Letters 9(8), 553–560.Google Scholar
  21. 21.
    Huitron, C. and Limon-Lason, J. (1978),Biotechnol. Bioeng. 20, 1377–1391.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • M. C. B. Pimentel
    • 1
  • M. S. S. Ferreira
    • 1
  1. 1.Departamento de BioquimicaG. C. B./U. F. PERecifeBrazil

Personalised recommendations