Advertisement

Applied Biochemistry and Biotechnology

, Volume 27, Issue 1, pp 9–25 | Cite as

Influence of cultivation conditions on the production of cellulolytic enzymes withTrichoderma reesei Rutgers C30 in aqueous two-phase systems

  • Ingrid Persson
  • Folke Tjerneld
  • Bärbel Hähn-Hagerdal
Article

Abstract

Cellulolytic enzyme production in aqueous two-phase systems withTrichoderma reesei Rutgers C30 has been investigated. The influ ence of different phase systems, as well as addition of media compo nents and substrate on enzyme production have been studied. Extractive enzyme production in fed-batch cultivations was per formed in a phase system composed of PEG 8000 5%-Dextran T500 7% with 1% Solka-Floc BW 200 as substrate. The cellulolytic enzyme system was intermittently withdrawn with the top phase. Addition of media components every 24 h and cellulose every 72 h gave an aver age enzyme activity in the withdrawn top phase of 2.2 FPU/mL dur ing 170 h cultivation. The corresponding productivity was 18 FPU/lh. The productivity was increased to 24 FPU/l.h when media compo nents and cellulose were added every 72 h. The average enzyme con centration was then 1.6 FPU/mL. The results are discussed in relation to methods for cellulolytic enzyme production involving immobiliza tion and cell recycling.

Index Entries

Cellulolytic enzymes aqueous two-phase systems Trichoderma reesei cellulose production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castanon, M. and Wilke, C. R. (1980),Biotech Bioeng 22, 1037.CrossRefGoogle Scholar
  2. 2.
    Persson, I., Tjerneld, F., and Hahn-Hagerdal, B. (1989),Proc. Biochem., accepted for publication.Google Scholar
  3. 3.
    Ryu, D. D. T. and Mandels, M. (1980),Enzyme Microb. Technol 2, 91.CrossRefGoogle Scholar
  4. 4.
    Montenecourt, B. S. and Eveleigh, D. E. (1979),Adv. Chem. Ser. 181, 289.CrossRefGoogle Scholar
  5. 5.
    Shoemaker, S. P., Raymond, J. C, and Bruner, R. (1981),Basic Life Sci. (Trends in the Biol. Ferment. Fuels Chem.)18, 89.Google Scholar
  6. 6.
    Warzywoda, M, Ferre V., and Pourquie, J. (1983),Biotech. Bioeng. 25, 3005.CrossRefGoogle Scholar
  7. 7.
    Mandels, M. (1975),Biotech. Bioeng. Symp. No 5, 81.Google Scholar
  8. 8.
    Watson, T. G., Nelligan, I., and Lessing, L. (1984),Biotechnol. Lett. 6, (10), 667.CrossRefGoogle Scholar
  9. 9.
    Hendy, N. A., Wilke, C. R., and Blanch, H. W. (1984),Enzyme Microb. Technol 6, 73.CrossRefGoogle Scholar
  10. 10.
    Albertsson, P-A (1986), inPartition of Cell Particles and Macromolecules, Third Edition, Wiley and Sons, Inc., New York.Google Scholar
  11. 11.
    Kula, M-R., Kroner, K. H., and Hustedt, H. (1982),Adv. Biochem. Eng. 24, 74.Google Scholar
  12. 12.
    Andersson, E. and Hahn-Hagerdal, B. (1990),Enzyme Microb. Technol. 12, 242.CrossRefGoogle Scholar
  13. 13.
    Tjerneld, F., Persson, I., Albertsson, P-Å. and Hahn-Hägerdal, B. (1985),Biotech. Bioeng. 27, 1044.CrossRefGoogle Scholar
  14. 14.
    Persson, I., Tjerneld, F., and Hahn-Hagerdal, B. (1984),Enzyme Microb. Technol. 6, 415.CrossRefGoogle Scholar
  15. 15.
    Andersson, E., Johansson, A-C, and Hahn-Hagerdal, B. (1985),Enzyme Microb. Technol. 7, 333.CrossRefGoogle Scholar
  16. 16.
    Persson, I., Tjerneld, F., and Hahn-Hagerdal, B. (1989),Biotechnol. Techniques 3, 265.CrossRefGoogle Scholar
  17. 17.
    Vogel, H.J. (1964),The American Naturalist XCVII, (903), 435.CrossRefGoogle Scholar
  18. 18.
    Mandels, M., Andreotti, R., and Roche, C. (1976),Biotech. Bioeng. 6, 21.Google Scholar
  19. 19.
    Kroner, K. H., Hustedt, H., and Kula M-R. (1982),Biotech. Bioeng. 24, 1015.CrossRefGoogle Scholar
  20. 20.
    Miller, G. L., Blum, R., Glennon, W. E., and Burton, A. L. (1960),Anal. Biochem. 2, 127.CrossRefGoogle Scholar
  21. 21.
    Tjerneld, F., Persson, I., Albertsson, P-A., and Hahn-Hagerdal, B. (1985),Biotech. Bioeng. 27, 1036.CrossRefGoogle Scholar
  22. 22.
    Albertsson, P-Å., Cajarville, A., Brooks, D. E., and Tjerneld, F. (1987),Biohim. Biophys. Acta 926, 87.Google Scholar
  23. 23.
    Veide, A., Smeds, A. L., and Enfors, S-O. (1983),Biotech. Bioeng. 25, 1789.CrossRefGoogle Scholar
  24. 24.
    Ramgren, M., Andersson, E., and Hahn-Hågerdal, B. (1988),Appl. Microbiol. Biotechnol. 29, 337.CrossRefGoogle Scholar
  25. 25.
    Andersson, E. and Hahn-Hagerdal, B. (1988),Appl. Microbiol. Biotechnol. 29, 329.CrossRefGoogle Scholar
  26. 26.
    Kumakura, M. and Kaetsu, I. (1986),Biotechnol. Appl. Biochem. 8, 195.Google Scholar
  27. 27.
    Webb, C, Fukuda, H., and Atkinson, B. (1986),Biotech. Bioeng. 28, 41.CrossRefGoogle Scholar
  28. 28.
    Frein, E. M., Montenecourt, B. S., and Eveleigh, D. E. (1982),Biotechnol. Lett. 4, (5), 287.CrossRefGoogle Scholar
  29. 29.
    Ghose, T. K. and Sahai, V. (1979),Biotech. Bioeng. 21, 283.CrossRefGoogle Scholar
  30. 30.
    Kula, M.-R., Kroner, K., and Hustedt, H. (1982),Adv. Biochem. Eng. 24, 73.Google Scholar
  31. 31.
    Tjerneld, F., Johansson, G., and Joelsson, M. (1987),Biotech. Bioeng. 30, 809.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Ingrid Persson
    • 1
  • Folke Tjerneld
    • 1
  • Bärbel Hähn-Hagerdal
    • 2
  1. 1.Department of BiochemistryChemical Center, Lund UniversityLundSweden
  2. 2.Department of Applied MicrobiologyChemical Center, Lund UniversityLundSweden

Personalised recommendations