Applied Biochemistry and Biotechnology

, Volume 19, Issue 2, pp 163–175 | Cite as

Immobilization/stabilization of lipase fromCandida rugosa

  • Christina Otero
  • Antonio Ballesteros
  • Josí M. Guisán


With the aim of fixing the enzyme to the maxtrix by multiple covalent linkages, lipase fromCandida rugosa (formerlycylindracea) has been insolubilized through its amino groups on Sepharose 6B previously activated with 2,3-epoxy-1-propanol. Two main variables that are known to control the number of bonds formed have been tested: the contact time between enzyme and activated support, and the temperature at which the immobilization reaction is carried out. Studies on activity and stability of the different derivatives prepared showed that higher temperatures and longer contact times lead to insolubilized enzymes that are more resistant to inactivation by temperature and the presence of organic solvents. At 50°C and pH 7.2, the insoluble lipase was found to be 140 times more stable than its soluble counterpart.

Index Entries

Glycidol-activated agarose sepharose(aldehyde) lipase fromCandida cylindracea multipoint attachment, enzyme insolubilization by covalent lipase insolubilization activity-stability organic solvents, effect of 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borgstrom, B. and Brockmam, H. L., eds. (1984),Upases, Elsevier, Amsterdam.Google Scholar
  2. 2.
    Macrae, A. R. and Hammond, R. C. (1985),Biotechnology and Genetic Engineering Reviews 3, 193.Google Scholar
  3. 3.
    Zaks, A. and Klibanov, A. M. (1985),Proc. Natl. Acad. Sci. USA 82, 3192.CrossRefGoogle Scholar
  4. 4.
    Margolin, A. L. and Klibanov, A. M. (1987),J. Amer. Chem. Soc. 109, 3802.CrossRefGoogle Scholar
  5. 5.
    Desnuelle, P. (1972),The Enzymes, 3rd ed., vol. 7, Boyer, P. D. ed., Academic, New York, pp. 575–616.Google Scholar
  6. 6.
    Benzonana, G. and Esposito, S. (1971),Biochim. Biophys. Acta 231, 15.Google Scholar
  7. 7.
    Klibanov, A. M. (1982),Adv. Appl. Microbiol. 29, 1.CrossRefGoogle Scholar
  8. 8.
    Guisán, J. M. (1988),Enzyme Mic. Technol. 10, 375.CrossRefGoogle Scholar
  9. 9.
    Blanco, R. M., and Guisán, J. M. (1988),Enzyme Mic. Technol. 10, 227.CrossRefGoogle Scholar
  10. 10.
    Guisán, J. M., Blanco, R. M., and Alvaro, G. (1987),Proc. 4th European Congress on Biotechnology, vol. 2, Neijssel, O. M., vanderMeer, R. R., and Luyben, K. Ch. A. M. eds., Elsevier, Amsterdam, pp. 97–100.Google Scholar
  11. 11.
    Blanco, R. M., Calvete, J. J., and Guisán, J. M. (1988),Enzyme Mic. Technol., in press.Google Scholar
  12. 12.
    Guisán, J. M., Serrano, J., Melo, F. V., and Ballesteros, A. (1987),Appl. Biochem. Biotechnol. 14, 49.CrossRefGoogle Scholar
  13. 13.
    Blanco, R. M. and Guisán, J. M. (1988),Enzyme Mic. Technol., in press.Google Scholar
  14. 14.
    Morrison, R. J. and Boyd, R. N. (1973),Organic Chemistry, Allyn and Bacon, Boston.Google Scholar
  15. 15.
    Anfinsen, C. B., Cuatrecasas, P., and Taniuchi, H. (1971),The Enzymes, vol. 4, Boyer, P. D., ed., Academic, New York, pp. 177–204.Google Scholar
  16. 16.
    Tomizuka, N., Ota, Y., and Yamada, K. (1966),Agr. Biol. Chem. 30, 576.Google Scholar
  17. 17.
    Tomizuka, N., Ota, Y., and Yamada, K. (1966),Agr. Biol Chem. 30, 1090.Google Scholar
  18. 18.
    Kimura, Y., Tanaka, A., Sonomoto, K., Nihira, T., and Fukui, S. (1983),Eur. J. Appl. Microbiol. Biotechnol. 17, 107.CrossRefGoogle Scholar
  19. 19.
    Guisán, J. M. and Ballesteros, A. (1981),Enzyme Mic. Technol. 3, 313.CrossRefGoogle Scholar
  20. 20.
    Nasri, M. and Thomas, D. (1986),Nucl. Acids. Res. 14, 811.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1988

Authors and Affiliations

  • Christina Otero
    • 1
  • Antonio Ballesteros
    • 1
  • Josí M. Guisán
    • 1
  1. 1.Instituto de Catálisis y PetroleoquimicaCSICMadridSpain

Personalised recommendations