Advertisement

Applied Biochemistry and Biotechnology

, Volume 19, Issue 1, pp 103–112 | Cite as

Patents and literature biocatalysis in nonaqueous media

  • Jonathan S. Dordick
Article

Abstract

Biocatalysis in nonaqueous media is being used in increasing regularity both in academic and industrial research. A variety of biocatalysts have been used in organic media including enzymes, multienzyme systems, and whole cells. In addition, the nonaqueous media has encompassed both monophasic and biphasic solvent systems, enzymes and whole cells in reversed micelles, enzymes and cells in nearly anhydrous (no added water) solvents, and enzymes catalytically active in supercritical fluids and the gas phase. Recent US and overseas patents and scientific literature on biocatalysis in nonaqueous media are surveyed. Patent abstracts are summarized individually, and literature references are divided into major subheadings.

Keywords

Lipase Organic Solvent Apply Biochemistry Reverse Micelle Biocatalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

Reviews

  1. 1.
    Cesti, P., Francalanci, F., and Foa, M. (1986), Enzyme Catalysis in Organic Solvents.Chim. Ind. (Milan),68, 130–133.Google Scholar
  2. 2.
    Duarte, J. C. (1987), Bioconversions in Organic Solvents.Nato ASI Ser., Ser A,128 (Perspect. Biotechnol.), 23–41.Google Scholar
  3. 3.
    Doddema, H. J. (1987), Enzymes Also Function in Organic Solvents.PT-Procestech 42, 44–47.Google Scholar
  4. 4.
    Klibanov, A. M. (1986), Enzymes that Work in Organic Solvents.Chemtech 16, 354–359.Google Scholar
  5. 5.
    Fukui, S. and Tanaka, A. (1985), Enzymic Reactions in Organic Solvents.Endeavor,9, 10–17.CrossRefGoogle Scholar
  6. 6.
    Hailing, P. J. (1987), Biocatalysis in Multi-Phase Reaction Mixtures Containing Organic Solvents.Biotechnol. Adv. 5, 47–84.CrossRefGoogle Scholar
  7. 7.
    Martinek, K., Berezin, I. V., Khmel’nitskii, Yu. L., and Levashov, A. V. (1987), Micellar Enzymology: Potentialities in Applied Areas (Biotechnology).Collect. Czech. Chem. Commun. 52, 2589–2602.CrossRefGoogle Scholar
  8. 8.
    Martinek, K., Berezin, I. V., Khmel’nitskii, Yu. L., Klyachko, N. L., and Levashov, A. V. (1987), Enzymes Entrapped into Reversed Micelles of Surfactants in Organic Solvents: Key Trends in Applied Enzymology (Biotechnology).Biocatalysis 1, 9–15.CrossRefGoogle Scholar
  9. 9.
    Seno, M. and Noritomi, H. (1986), Enzyme Reactions in Reversed Micelle Systems.Kagaku to Seibutsu 24, 569–575.Google Scholar
  10. 10.
    Luisi, P. L. and Magid, L. J. (1986), Solubilization of Enzymes and Nucleic Acids in Hydrocarbon Micellar Solutions.CRC Crit. Rev. Biochem. 20, 409–474.CrossRefGoogle Scholar
  11. 11.
    Luisi, P. L. and Laane, C. (1986), Solubilization of Enzymes in Apolar Solvents via Reverse Micelles.Trends Biotechnol. 4, 153–161.CrossRefGoogle Scholar
  12. 12.
    Berezin, I. V., Khmel’nitskii, Yu. L., Klyachko, N. L., Levashov, A. V., and Martinek, K. (1984),3rd Eur. Congr. Biotechnol, vol. 3, 449–454.Google Scholar
  13. 13.
    Mattiasson, B. and Larsson, M. (1985), Extractive Bioconversions with Emphasis on Solvent Production.Biotechnol. Genetic Eng. Rev. 3, 137–174.Google Scholar

Books

  1. 1.
    Laane, C., Tramper, J., and Lilly, M. D., eds. (1987),Biocatalysis in Organic Media, Elsevier, Amsterdam, 426 pp.Google Scholar
  2. 2.
    Schneider, M. P., ed. (1986), Enzymes as Catalysts in Organic Solvents, Nato ASI Series, Series C:Mathematical and Physical Sciences vol. 178, D. Reldel, Dordrecht, 421 pp.Google Scholar

Research Articles Nearly Anhydrous Systems

  1. 1.
    Boeriu, C. G., Dordick, J. S., and Klibanov, A. M. (1986), Enzymatic Reactions in Liquid and Solid Paraffins: Application for Enzyme-Based Temperature Abuse Sensors.Bio/technology 4, 997–999.CrossRefGoogle Scholar
  2. 2.
    Cesti P., Zaks, A., and Klibanov, A. M. (1985), Preparative Regioselective Acylation of Glycols by Enzymatic Transesterification in Organic Solvents.Appl. Biochem. Biotechnol. 11, 401–407.CrossRefGoogle Scholar
  3. 3.
    Effenberger, F., Ziegler, T., and Foerster, S. (1987), Enzyme-Catalyzed Cyanohydrin Preparation in Organic Solvents.Angew. Chem. 99, 491–492.CrossRefGoogle Scholar
  4. 4.
    Goderis, H. L., Ampe, G., Feyten, M. P., Fouwe, B. L., Guffens, W. M., van Cauwenbergh, S. M., and Tobback, P. P. (1987), Lipase-Catalyzed Ester Exchange Reactions in Organic Media with Controlled Humidity.Biotechnol. Bioeng. 30, 258–266.CrossRefGoogle Scholar
  5. 5.
    Grunwald, J., Wirz, B., Scollar, M. P., and Klibanov, A. M. (1986), Asymmetric Oxidoreductions Catalyzed by Alcohol Dehydrogenase in Organic Solvents.J. Amer. Chem. Soc. 108, 6732–6734.CrossRefGoogle Scholar
  6. 6.
    Gutman, A. L., Zuobi, K., and Boltansky, A. (1987), Enzymic lactonization of gamma-hydroxy esters in organic solvents. Synthesis of optically pure gamma-methylbutyrolactones and gamma-phenylbutyrolactone.Tetrahedron Lett. 28, 3861–3864.CrossRefGoogle Scholar
  7. 7.
    Hoq, M. M., Tagarni, H., Yamane, T., and Shimizu, S. (1985), Characteristics of Continuous Glyceride Synthesis by Lipase in a Microporous Hydrophobic Membrane Bioreactor.Agr. Biol. Chem. 49, 335–342.Google Scholar
  8. 8.
    Inada, Y., Takahashi, K., Yoshimoto, T., Ajima, A., Matsushima, A., and Saito, Y. (1986), Application of Polyethylene Glycol-Modified Enzymes in Biotechnological Processes: Organic Solvent-Soluble Enzymes.Trends Biotechnol. 4, 190–194.CrossRefGoogle Scholar
  9. 9.
    Kazandjian, R. A., and Klibanov, A. M. (1985), Regioselective Oxidation of Phenols Catalyzed by Polyphenol Oxidase in Chloroform.J. Amer. Chem. Soc. 107, 5448–5450.CrossRefGoogle Scholar
  10. 10.
    Kazandjian, R. Z., Dordick, J. S., and Klibanov, A. M. (1986), Enzymatic Analyses in Organic Media.Biotechnol. Bioeng. 28, 417–421.CrossRefGoogle Scholar
  11. 11.
    Kirchner, G., Scollar M. P., and Klibanov, A. M. (1985), Resolution of Racemic Mixtures via Lipase Catalysis in Organic Solvents.J. Amer. Chem. Soc. 107, 7072–7076.CrossRefGoogle Scholar
  12. 12.
    Kise, H. and Shirato, H. (1985), Synthesis of Aromatic Amino Acid Ethyl Esters by Chymotrypsin in Solutions of High Ethanol Concentration.Tetrahedron Lett. 26, 6081–6084.CrossRefGoogle Scholar
  13. 13.
    Koshiro, S., Sonomoto, K., Tanaka, A. and Fukui, S. (1985), Stereoselective Esterification of d,l-Menthol by Polyurethane-Entrapped Lipase in Organic Solvent.J. Biotechnol. 2, 47–57.CrossRefGoogle Scholar
  14. 14.
    Kresze, G. and Sabuni, M. (1987), Experiments on the Optical Resolution of Conduramine Analogs by Enzymic Transesterification in Organic Solvents.Z. Naturforsch., C: Biosci. 42, 446–448.Google Scholar
  15. 15.
    Laane, C., Boeren, S., Vos, K., and Veeger, C. (1987), Rules for Optimization of Biocatalysis in Organic Solvents.Biotechnol. Bioeng. 30, 81–87.CrossRefGoogle Scholar
  16. 16.
    Langrand, G., Secchi, M., Buono, G., Baratti, J., and Triantaphylides, C. (1985), Lipase-Catalyzed Ester Formation in Organic Solvents: An Easy Preparative Resolution of Alpha-Substituted Cyclohexanols.Tetrahedron Lett. 26, 1857–1860.CrossRefGoogle Scholar
  17. 17.
    Langrand, G., Baratti, J., Buono, G., and Triantaphylides, C. (1986), Lipase Catalyzed Reactions and Strategy for Alcohol Resolution.Tetrahedron Lett. 27, 29–32.CrossRefGoogle Scholar
  18. 18.
    Legoy, M. D., Kim, H. S., and Thomas, D. (1985), Use of Alcohol Dehydrogenase for Flavor Aldehyde Production.Proc. Biochem. 20, 145–148.Google Scholar
  19. 19.
    Marlot, C., Langrand, G., Triantaphylides, C. and Baratti, J. (1985), Ester Synthesis in Organic Solvent Catalyzed by Lipases Immobilized on Hydrophobic Supports.Biotechnol. Lett. 7, 647–650.CrossRefGoogle Scholar
  20. 20.
    Margolin, A. L. and Klibanov, A. M. (1986), Peptide Synthesis Catalyzed by Lipases in Anhydrous Organic Solvents.J. Amer. Chem. Soc. 109, 3802–3804.CrossRefGoogle Scholar
  21. 21.
    Margolin, A. L., Tai, D. F., and Klibanov, A. M. (1987), Incorporation of D-amino acids into peptides via enzymic condensation in organic solvents.J. Amer. Chem. Soc. 109, 7885–7887.CrossRefGoogle Scholar
  22. 22.
    Ooshima, H., Mori, H., and Harano, Y. (1985), Synthesis of Aspartame Precursor by Solid Thermolysin in Organic Solvents.Biotechnol. Lett. 7, 789–792.CrossRefGoogle Scholar
  23. 23.
    Saunders, R., Cheetham, P. S. J., and Hardman, R. (1986), Microbial Transformation of Crude Fenugreek Steroids.Enzyme Microbial Technol. 8, 549–555.CrossRefGoogle Scholar
  24. 24.
    Takahashi, K., Nishimura, H., Yoshimoto, T., Okada, M., Ajima, A., Matsushima, A., Tamaura, Y., Saito, Y., and Inada, Y. (1984), Polyethylene Glycol-Modified Enzymes Trap Water on Their Surface and Exert Enzymic Activity in Organic Solvents.Biotechnol. Lett. 6, 765–770.CrossRefGoogle Scholar
  25. 25.
    Tanaka, A. and Fukui, S. (1985), Bioconversion of Lipophilic Compounds by Immobilized Biocatalysts in the Presence of Organic Solvents.Biotechnol. Ser. 5 (Enzymes Immobilized Cells Biotechnol), 149–176.Google Scholar
  26. 26.
    Therisod, M. and Klibanov, A. M. (1986), Facile Enzymatic Preparation of Monoacylated Sugars in Pyridine.J. Amer. Chem. Soc. 108, 5638–5640.CrossRefGoogle Scholar
  27. 27.
    Therisod, M. and Klibanov, A. M. (1987), Regioselective Acylation of Secondary Hydroxyl Groups in Sugars Catalyzed by Lipases in Organic Solvents.J. Amer. Chem. Soc. 109, 3977–3981.CrossRefGoogle Scholar
  28. 28.
    Ueda, M., Mukataka, S., Sato, S., and Takahashi, J. (1986), Conditions for the Microbial Oxidation of Various Higher Alcohols in Isooctane.Agric. Biol. Chem. 50, 1533–1537.Google Scholar
  29. 29.
    Wingard, L. Brackin, J. S., and Silver, R. (1986), Formation of Propylene Oxide byNocardia corallina Immobilized in Liquid Paraffin.Biotechnol. Bioeng. 28, 343–348.CrossRefGoogle Scholar
  30. 30.
    Wisdom, R. A., Dunnill, P., and Lilly, M. D. (1985), Enzymic Interesterification of Fats: The Effect of Non-Lipase Material on Immobilized Enzyme Activity.Enzyme Microbial Technol. 7, 567–572.CrossRefGoogle Scholar
  31. 31.
    Zaks, A. and Klibanov, A. M. (1986), Substrate Specificity of Enzymes in Organic Solvents vs. Water is Reversed.J. Amer. Chem. Soc. 108, 2767–2768.CrossRefGoogle Scholar
  32. 32.
    Zaks, A. and Klibanov, A. M. (1985), Enzyme Catalyzed Processes in Organic Solvents.Proc. Natl. Acad. Sci. USA 82, 3192–3196.CrossRefGoogle Scholar

Reverse Micelles

  1. 1.
    Eremin, A. N. and Metelitsa, D. I. (1985), Regulation of the Catalytic Activity of Peroxidase in Surfactant Mixed Reversed Micelles.Biokhimiya (Moscow)50, 102–109.Google Scholar
  2. 2.
    Giovenco, S., Verheggen, F., and Laane, C. (1987), Purification of Intracellular Enzymes from Whole Bacterial Cells using Reverse Micelles.Enzyme Microbial Technol. 9, 470–473.CrossRefGoogle Scholar
  3. 3.
    Han, D. and Rhee, J. S. (1986), Characteristics of Lipase-Catalyzed Hydrolysis of Olive Oil in AOT-Isooctane Reversed Micelles.Biotechnol. Bioeng. 28, 1250–1255.CrossRefGoogle Scholar
  4. 4.
    Haering, G., Luisi, P. L., and Meussdoerffer, E. (1985), Solubilization of Bacterial Cells in Organic Solvents via Reverse Micelles.Biochem. Biophys. Res. Commun. 127, 911–915.CrossRefGoogle Scholar
  5. 5.
    Kabanov, A. V., Klyachko, N. L., Pshezhetskii, A. V., Nametkin, S. N., Martinek, K., and Levashov, A. V. (1987), Kinetic Mechanisms of Enzymatic Catalysis in Systems of Surfactant Reversed Micelles in Organic Solvents.Mol. Bio. (Moscow)21, 275–286.Google Scholar
  6. 6.
    Luisi, P. L. (1985), Enzymes Hosted in Reverse Micelles in Hydrocarbon Solutions.Angew. Chem. Int. Ed. 24, 439–450.CrossRefGoogle Scholar
  7. 7.
    Mevkh, A. T., Sud’ina, G. F., Lagutina, I. O., and Levashov, A. V. (1985), Catalytic Properties of the Membrane Enzyme, Prostaglandin H Synthetase, in a System of Aerosol-OT Reverse Micelles in Octane.Biokhimiya (Moscow)50, 1719–1723.Google Scholar
  8. 8.
    O’Connor, J., Stockley, I. C., and Walde, P. (1986), Studies in Büe Salt Solutions. XXII. The Effect of Reversed Micelles and of Aerosol-OT Aqueous Micelles on the Esterase Activity of Bile-Salt-Stimulated Human Milk Lipase. Determination of Enzyme-Inhibitor Complex Dissociation Constants.Aust. J. Chem. 39, 2037–2048.Google Scholar
  9. 9.
    Steinmann, B., Jaeckle, H., and Luisi, P. L. (1986), A Comparative Study of Lysozyme Conformation in Various Reverse Micellar Systems.Biopolymers 25, 1133–1156.CrossRefGoogle Scholar

Aqueous-Organic Biphasic Systems

  1. 1.
    Brink, L. E. S. and Tramper, J. (1985), Optimization of Organic Solvent in Multiphase Biocatalysis.Biotechnol. Bioeng. 27, 1258–1269.CrossRefGoogle Scholar
  2. 2.
    Brookes, I. K., Lilly, M. D., and Drozd, J. W. (1986), Stereospecific Hydrolysis of d,I-Menthyl Acetate byBacillus subtilis: Mass Transfer reaction Interactions in a Liquid-Liquid system.Enzyme Microbial Technol. 8, 53–57.CrossRefGoogle Scholar
  3. 3.
    Cho, T. and Shuler, M. L. (1986), Multimembrane Bioreactor for Extractive Fermentation.Biotechnol. Prog. 2, 53–60.Google Scholar
  4. 4.
    Furahashi, K., Shintani, M., and Takagi, M. (1986), Effects of Solvents on the Production of Epoxides byNocardia corallina B-276.Appl. Microbiol. Biotechnol. 23, 218–223.Google Scholar
  5. 5.
    Harbron, S., Smith, B. W., and Lilly, M. D. (1986), Two-Liquid Phase Biocatalysis: Epoxidation of 1,7-Octadiene byPseudomonas putida.Enzyme Microbial Technol. 8, 85–88.CrossRefGoogle Scholar
  6. 6.
    Honda, H., Taya, M., and Kobayashi, T. (1986), Ethanol Fermentation Associated with Solvent Extraction Using Immobilized Growing Cells ofSaccharomyces cerevisiae and its Lactose-Fermentable Fusant.J. Chem. Eng. Japan 19, 268–273.CrossRefGoogle Scholar
  7. 7.
    Hoq, M. M. Yamane, T., Shimizu, S., Funarla, T., and Ishida, S. (1985), Continuous Hydrolysis of Olive Oil by Lipase in Microporous Hydrophobic Membrane Bioreactor.J. Amer. Oil. Chem. Soc. 62, 1016–1021.CrossRefGoogle Scholar
  8. 8.
    Hoq, H. H., Koike, M., Yamane, T., and Shimizu, S. (1985), Continuous Hydrolysis of Olive Oil in Microporous Hydrophobie Hollow Fiber Bioreactor.Agric. iol. Chem. 49, 3171–3178.Google Scholar
  9. 9.
    Hoq, H. H., Yamane, T., and Shimizu, S. (1986), Role of Oleic Acid Solubilized in Buffer-Glycerol Solution on Adsorbed Lipase During Continuous Hydrolysis of Olive Oil in a Microporous Hydrophobie Membrane Bioreactor.Enzyme Microbial Technol. 8, 236–240.CrossRefGoogle Scholar
  10. 10.
    Ishii, S., Taya, M., and Kobayashi, T. (1985), Production of Butanol byClostridium acetobutylicum in Extractive Fermentation Systems.J. Chem. Eng. Japan 18, 125–130.CrossRefGoogle Scholar
  11. 11.
    Khar, H. T., Tan, N. H., and Chua, C. L. (1986), Lipase-Catalyzed Hydrolysis of Palm-Oil.J. Amer. Oil. Chem. Soc. 63, 538–540.CrossRefGoogle Scholar
  12. 12.
    Laane, C., Boeren, S., and Vos, K. (1985), On Optimizing Organic Solvents in Multi-Liquid-Phase Biocatalysis.Trends Biotechnol. 3, 252–2.Google Scholar
  13. 13.
    Maidan, R. and Willner, I. (1986), Photochemical and Chemical Enzyme Catalyzed Debromination of Meso-l,2-dibromostilbene in Multiphase Systems.J. Amer. Chem. Soc. 108, 1080–1082.CrossRefGoogle Scholar
  14. 14.
    van der Meer, A. B., Beenackers, M., and Stamhuis, E. J. (1986), Microbial Production of Epoxides from Alkenes in Continuous Multi-Phase Reactors.Chem. Eng. Sci. 41, 607–616.CrossRefGoogle Scholar
  15. 15.
    Miyano, S., Kawahara, K., Inoue, Y., and Hashimoto, H. (1987), A Convenient Preparation of Optically Active l,l’-Binaphthyl-2,2’-diol via Enzymatic Hydrolysis of the Racemic Diester.Chem. Lett. 355–-356.Google Scholar
  16. 16.
    Mukataka, S., Kobayashi, T., and Takahashi, J. (1985), Kinetics of Enzymatic Hydrolysis of Lipids in Biphasic Organic-Aqueous Systems.J. Ferm. Technol. 63, 461–466.Google Scholar
  17. 17.
    Nakanishi, K., Kamikubo, T., and Matsuno, R. (1985), Continuous Synthesis of N-0(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine Methyl Ester with Immobilized Thermolysin in an Organic Solvent.Bio/technology 3, 459–463.CrossRefGoogle Scholar
  18. 18.
    Nakanishi, K., Kimura, Y., and Matsuno, R. (1986), Design of Proteinase-Catalyzed Synthesis of Oligopeptides in an Aqueous Organic Biphasic System.Bio/technology 4, 452–454.CrossRefGoogle Scholar
  19. 19.
    Schutt, H., Schmidt-Kastner, G., Arens, A., and Preiss, M. (1985), Preparation of Optically Active D-Arylglycines for Use as Side Chains for Semi-synthetic Penicillins and Cephalosporins Using Immobilized Subtilisins in Two-Phase Systems.Biotechnol. Bioeng. 27, 420–433.CrossRefGoogle Scholar
  20. 20.
    Selvi, C., Baboulene, M., Speziale, V., and Lattes, A. (1985), Synthesis by Enzymic Catalysis II. Amino Acid Polymerization.J. Chem. Technol. Biotechnol. 35B, 282–290.CrossRefGoogle Scholar
  21. 21.
    Singh, M. and Thomas, M. (1985), Biocatalytic Oxidation of Hydroquinone top-Benzoquinone in a Water-Organic Solvent Two-Phase System.Biotechnol. Lett. 7, 663–664.CrossRefGoogle Scholar
  22. 22.
    Taylor, F., Panzer, C. C., Craig, J. C., and O’Brien, D. J (1986), Continuous Hydrolysis of Tallow with Immobilized Lipase in a Microporous Membrane.Biotechnol. Bioeng. 28, 1318–1322.CrossRefGoogle Scholar
  23. 23.
    Weetall, H. H. (1985), Enzymatic Synthesis of Gallic Acid Esters.Appl. Biochem. Biotechnol. 11, 25–28.CrossRefGoogle Scholar

Water-Miscible Organic-Aqueous Cosolvent Systems

  1. 1.
    Corley, E. and Wolosiuk, R. A. (1985), The Effect of Organic Solvents on the Activation and the Activity of Spinach Chloroplast Fructose-l,6-bisphosphatase.J. Biol. Chem. 260, 3978–3983.Google Scholar
  2. 2.
    Dordick, J. S., Marietta, M. A., and Klibanov, A. M. (1986), Peroxidases De-polymerize Lignin in Organic Media But Not in Water.Proc. Natl. Acad. Sci. USA 83, 6255–6257.CrossRefGoogle Scholar
  3. 3.
    Dordick, J. S., Marietta, M. A., and Klibanov, A. M. (1987), Polymerization of Phenols Catalyzed by Peroxidase in Non-Aqueous Media.Biotechnol. Bioeng. 30, 31–36.CrossRefGoogle Scholar
  4. 4.
    Korpela, M. and Tahti, H. (1986), Effect of Organic Solvents on Human Erythrocyte Membrane Acetylcholinesterase Activityin Vitro. Arch. Toxicol., Supp. 9, (Toxic Interfaces Neurones, Smoke Genes), 320–323.Google Scholar
  5. 5.
    Korpela, M. and Tahti, H. (1986), The Effect of Selected Organic Solvents on Intact Human Red Cell Membrane Acetylcholinesterasein Vitro. Toxicol. Appl. Pharmacol. 85, 257–262.Google Scholar
  6. 6.
    Nagamoto, H., Yasuda, T., and Inoue, H. (1986), Effect of Organic Solvents on the Activity of Glucoamylase.Biotechnol. Bioeng. 28, 1172–1177.CrossRefGoogle Scholar
  7. 7.
    Osetskii, A.I. (1986), Kinetic Properties of Enzyme Reactions in a Medium of Viscous Organic Solvents.Kriobiologiya 4, 36–42.Google Scholar
  8. 8.
    Pungnieri, M., Skalli, A., Coletti-Previero, M. A., and Previera, A. (1986), Peptide and Ester Synthesis in Organic Solvents Catalyzed by Seryl Proteases Linked to Alumina.Proteins: Struc., Funct., Genet. 1, 134–138.CrossRefGoogle Scholar
  9. 9.
    Sakurai, H. and Hisabori, T. (1987), Effects of Organic Solvents on the Enzyme-Bound ATP Synthesis by Isolated CF1.Prog. Photosynth. Res., Proc. Int. Congr. Photosynth., 7th, Meeting Date 1986, vol. 3, 13-16. Ed., Biggins, J. Nijhof, Dordrecht, Netherlands.Google Scholar
  10. 10.
    Sigel, H., Martin, B. R., Tribolet, R., Haering, U. K., and Malini-Balakrishnan, R. (1985), An Estimation of the Equivalent Solution Dielectric Constant in the Active Site Cavity of Metalloenzymes. Dependence of Carbohydrate-Metal-Ion Complex Stabilities on the Polarity of Mixed Aqueous/Organic Solvents.Eur. J. Biochem. 152, 187–193.CrossRefGoogle Scholar
  11. 11.
    Tahti, H. and Korpela, M. (1986),In Vitro Experiments on the Effects of Organic Solvents on Red Cell Membrane Acetylcholinesterase.Food Chem. Toxicol. 24, 805–806.CrossRefGoogle Scholar
  12. 12.
    Visuri, K. and Klibanov, A. M. (1987), Enzymatic Production of High Fructose Corn Syrup (HFCS) Containing 55% Fructose in Aqueous Ethanol.Biotechnol. Bioeng. 30, 917–921.CrossRefGoogle Scholar

Supercritical Fluids

  1. 1.
    van Eijs, A. M. M., Oostrom, W. H. M. and Wijsman, J. A. (1987), Enzymatic Transesterification in Supercritical Carbon Dioxide.Proc. 4th Eur. Congr. on Biotechnol. vol. 2., p. 211.Google Scholar
  2. 2.
    Hammond, D. A., Karel, M., Klibanov, A. M., and Krukonis, V. J. (1985), Enzymatic Reactions in Supercritical Gases.Appl. Biochem. Biotechnol. 11, 393–400.CrossRefGoogle Scholar
  3. 3.
    Randolph, T. W., Blanch, H. W., Prausnitz, J. M., and Wilke, C. R. (1985), Enzymic Catalysis in a Supercritical Fluid.Biotechnol. Lett. 5, 325–328.CrossRefGoogle Scholar
  4. 4.
    Randolph, T. W., Clark, D. S., Blanch, H. W., and Prausnitz, J. M. (1987), Enzymatic Oxidation of Cholesterol Aggregates in Supercritical Carbon Dioxide.Science 238, 387–390.Google Scholar

Gas Phase

  1. 1.
    Pulvin, S., Legoy, M. D., Lortie, R., Pensa, M., and Thomas, D. (1986), Enzyme Technology and Gas Phase Catalysis: Alcohol Dehydrogenase Example.Biotechnol. Lett. 8, 783–784.CrossRefGoogle Scholar

Enzymatic Stability in Nonaqueous Media

  1. 1.
    Aldercreutz, P. and Mattiasson, B. (1987), Aspects of Biocatalyst Stability in Organic Solvents.Biocatalysis 1, 99–108.CrossRefGoogle Scholar
  2. 2.
    Ayala, G., Tuena de Gomez-Puyou, M., Gomez-Puyou, A., and Darszon, A. (1986), Thermostability of Membrane Enzymes in Organic Solvents.FEBS Lett. 203, 41–43.CrossRefGoogle Scholar
  3. 3.
    Rodionova, M. V., Belova, Mozhaev, V. V., Martinek, K., and Berezin, I. V. (1987), Mechanism of Denaturation of Enzymes by Organic Solvents.Dokl. Akad. Nauk. SSR 292, 913–917.Google Scholar

Copyright information

© Humana Press Inc. 1988

Authors and Affiliations

  • Jonathan S. Dordick
    • 1
  1. 1.Department of Chemical and Materials EngineeringUniversity of IowaIowa City

Personalised recommendations