Rendiconti del Circolo Matematico di Palermo

, Volume 53, Issue 1, pp 85–92 | Cite as

Switching Sets Regolari E Cubiche Rigate DiP G(5,q) Piani Di Tralsazione Ad Essi AssociatiG(5,q) Piani Di Tralsazione Ad Essi Associati

  • Alessandro Basile
  • Paolo Brutti


In a recent paper, the authors studied some algebraic hypersurfaces of the third order in the projective spacePG(5,q) and they called them ruled cubics, since they possess three systems of planes. Any two of these constitute a regular switching set and furthermore, if Σ is a given regular spread ofPG(5,q), one of the three systems is contained in Σ.

The subject of this note is to prove, conversely, that every regular switching set (Φ, Φ′) with Φ ⊂ Σ is a ruled cubic and to construct, for a generic choice of the projective reference system inP G(5,q), the quasifield which coordinatizes the translation plane Π associated with the spread (Σ − Φ) ∪ Φ′.

The planes Π, of orderq 3, are a generalization of the finite Hall planes.


Projective Space Translation Plane Generic Choice Opportuna Matrice Matrice Invertibile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Basile A., Brutti P.,Struttura delle fibrazioni di una classe di piani di André generalizzati finiti di ordine q t+1, Rendiconti del Circolo Matematico di Palermo. Serie II,50 (2001), pp. 177–185.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Basile A., Brutti P., Cubiche rigate diPG(5,q)e fibrazioni dei piani di André generalizzati finiti di ordine q 3, Italian Journal of Pure and Applied Mathematics. To appear.Google Scholar
  3. [3]
    Basile A., Brutti P., Equivalenza proiettiva delle fibrazioni regolari diPG (2t+1,q), Atti Accademia di Scienze Lettere e Arti di Palermo.2 (1985), pp. 43–48.Google Scholar
  4. [4]
    Bruck R.H., Bose R.C.,The construction of translation planes from projective spaces, Journal of Algebra.1 (1964), pp. 85–102.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Bruck R.H., Bose R.C.,Linear representation of projective planes in projective spaces, Journal of Algebra.4 (1966), pp. 117–172.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    H. Luneburg,Translation Planes. Springer Verlag, 1980.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Alessandro Basile
    • 1
  • Paolo Brutti
    • 1
  1. 1.Dipartimento di MatematicaPerugia

Personalised recommendations