The Journal of Geometric Analysis

, Volume 3, Issue 5, pp 423–511 | Cite as

Some constructions with solutions of variable coefficient elliptic equations

  • Thomas H. Wolff


We give a characterization of pairs of functionsf, g on the boundary of a compact manifold, which are the Dirichlet and Neumann boundary values for a solution of some second-order linear divergence-form elliptic equation, and we apply this to some other related questions in potential theory.

Math Subject Classification


Key Words and Phrases

Critical point divergence-form elliptic equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Greene, R., and Wu, H. Embeddings of open Riemannian manifolds by harmonic functions.Ann. Inst. Fourier (Grenoble) (1) 25, 215–235 (1975).MATHMathSciNetGoogle Scholar
  2. [2]
    Guillemin, V., and Pollack, A.Differential Topology. Prentice-Hall, Englewood Cliffs, NJ, 1974.MATHGoogle Scholar
  3. [3]
    Hardt, R., and Simon, L. Nodal sets for solutions of elliptic equations.J. Diff. Geo. 30, 505–522 (1989).MATHMathSciNetGoogle Scholar
  4. [4]
    Hempel, J.3-Manifolds. Princeton University Press, Princeton, NJ, 1976.MATHGoogle Scholar
  5. [5]
    Kenig, C. Carleman estimates, uniform Sobolev inequalities for second order differential operators, and unique continuation theorems.Proc. ICM, Berkeley, pp. 948–960 (1986), American Mathematical Society, 1987.Google Scholar
  6. [6]
    Miller, K. Non-unique continuation for certain ODE’s in Hilbert space and for uniformly parabolic and elliptic equations in self-adjoint divergence form. InSymposium on Non-Well-Posed Problems and Logarithmic Convexity, R.J. Knops, ed., pp. 85–101. Springer Lecture Notes in Mathematics, Vol. 316, 1973.Google Scholar
  7. [7]
    Milnor, J. A procedure for killing homotopy groups of differentiable manifolds.Proceedings of Symposia in Pure Mathematics 3, 39–55 (1961).MathSciNetGoogle Scholar
  8. [8]
    Milnor, J.Lectures on the h-Cobordism Theorem. Princeton University Press, Princeton, NJ, 1965.MATHGoogle Scholar
  9. [9]
    Ng, K.-F., and Wang, Y.-C.Partially Ordered Topological Vector Spaces. Oxford Mathematical Monographs. Clarendon Press, London, 1973.MATHGoogle Scholar
  10. [10]
    Plis, A. On non-uniqueness in the Cauchy problem for an elliptic second order differential equation.Bull. Acad. Sci. Polon., Ser. Sci. Math. Astro. Phys. 11, 95–100 (1963).MATHMathSciNetGoogle Scholar
  11. [11]
    Sullivan, D. Cycles for the dynamical study of foliated manifolds and complex manifolds.Inventiones Math. 36, 225–255 (1976).MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Sullivan, D. A homological characterization of foliations consisting of minimal surfaces.Comment. Math. Helv. 54(2), 218–223 (1979).MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Sylvester, J., and Uhlmann, C. The Dirichlet to Neumann map and applications. InInverse Problems in Partial Differential Equations, D. Colton, R. Ewing, and W. Rundell, eds., pp. 99–139. SIAM, Philadelphia, 1990.Google Scholar
  14. [14]
    Wallace, A. H. Modifications and cobounding manifolds.Canadian J. Math. 12, 503–528 (1960).MathSciNetGoogle Scholar
  15. [15]
    Wolff, T. Note on counterexamples in strong unique continuation problems.Proc. Amer. Math. Soc. (2) 114, 351–356 (1992).MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Wolff, T. Recent work on sharp estimates in second order elliptic unique continuation problems. Conference proceedings, Miraflores de la Sierra, 1992.J. Geom. Anal., to appear.Google Scholar
  17. [17]
    Wolff, T. A counterexample in a unique continuation problem.Communications in Analysis and Geometry, to appear.Google Scholar
  18. [18]
    Calabi, E. An intrinsic characterization of harmonic one forms. InGlobal Analysis: Papers in Honor of K. Kodaira, pp. 101–117, D. C. Spencer and S. Iyanaga, eds. Princeton University Press, Princeton, 1969.Google Scholar

Copyright information

© Mathematica Josephina, Inc. 1993

Authors and Affiliations

  • Thomas H. Wolff
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations