Biologia Plantarum

, 36:553 | Cite as

Axillary bud proliferation and ethylene production as controlled by radiation of different spectral composition and exogenous phytohormones

  • M. Panizza
  • F. Tognoni
  • B. Lercari
Orginal Papers


The effect of radiation of different spectral composition on axillary proliferation of lavandin (Lavandula officinalis Chaix ×Lavandula latifolia Villars cv. Grosso) was studied in combination with application of exogenous benzyladenine (BA) and putrescine (Put) and endogenous ethylene production. The effect of BA was predominant over the radiation. Continuous far-red showed a fluence rate-dependent promotion of shoot proliferation in the presence of BA. On BA-free medium, shoot number was enhanced under blue, white, and red radiation, at low photon fluence rates. BA, however, could reduce the inhibiting effect of blue and ultraviolet radiation, at high photon fluence rates. Exogenous Put stimulated axillary bud proliferation under some radiation treatments in the presence of BA. Moreover, Put, analogously to BA, could overcome the detrimental effect of ultraviolet radiation. A positive correlation between biotic ethylene production and shoot formation was evidenced under far-red at high photon fluence rate in the presence of BA, and under white, red and blue radiation at low photon fluence rate in the BA-free medium. However, when abiotic ethylene (released from the agarized medium) was stimulated by UV, no improvement of shoot formation was observed.


Ethylene Production Shoot Formation Shoot Proliferation Shoot Number Photon Fluence Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



blue radiation




far-red radiation


far red absorbing form of phytochrome


total phytochrome




red radiation


ultraviolet radiation


white radiation. Suffixes: h—high photon fluence rate


low photon fluence rate


  1. Appelgren, M.: Effects of light quality on stem elongation ofPelargonium in vitro.—Scientia Hort.45: 345–351, 1991.CrossRefGoogle Scholar
  2. Baraldi, R., Rossi, F., Lercari, B.:In vitro shoot development ofPrunus GF 655-2: interaction between light and benzyladenine.—Physiol. Plant.74: 440–443, 1988.CrossRefGoogle Scholar
  3. Butenko, R.G., Sprinchanu, E.K., Kataeva, N.V.: Influence of light quality on growth, morphogenesis and endogenous growth regulators levels ofArtemisia balchanorum test-tube plants.—In: Abstr. VII Int. Congress. Plant Tissue Cell Cult. P. 234. Amsterdam 1990.Google Scholar
  4. Chée, R., Pool, R.M.: Morphogenic responses to propagule triming, spectral irradiance and photoperiod of grapevine shoots reculturedin vitro.—J. amer. Soc. hort. Sci.114: 350–354, 1989.Google Scholar
  5. Cho, S.-C.: Effects of cytokinin and several inorganic cations on the polyamine content of lettuce cotyledons.—Plant Cell Physiol.24: 27–32, 1983.Google Scholar
  6. Craker, L.E., Abeles, F.B., Shropshire, W. Jr.: Light-induced ethylene production in sorghum.—Plant Physiol.51: 1082–1083, 1973.PubMedGoogle Scholar
  7. Economou, A.S., Read, P.E.: Light quality control of shoot and root formationin vitro in petunia cultures.—HortScience21: 761, 1986.Google Scholar
  8. Economou, A.S., Read, P.E.: Light treatments to improve efficiency ofin vitro propagation systems.— HortScience22: 751–754, 1987.Google Scholar
  9. Eliasson, L., Bollmark, M.: Ethylene as a possible mediator of light-induced inhibition of root growth. —Physiol. Plant.72: 605–609, 1988.CrossRefGoogle Scholar
  10. Feray, A., Hourmant, A., Beraud, J., Brun, A., Cann-Moisan, C., Caroff, J., Penot, M.: Influence of polyamines on the long distance transport of K (86Rb), in potato cuttings (Solanum tuberosum cv. Sirtema)—Comparative study with some phytohormones.—J. exp. Bot.43: 403–408, 1992.CrossRefGoogle Scholar
  11. Fridborg, G., Eriksson, T.: Partial reversal by cytokinin and (2-chloroethyl)-trimethylammonium chloride of near-ultraviolet inhibited growth and morphogenesis in callus cultures.—Physiol. Plant.34: 162–166, 1975.CrossRefGoogle Scholar
  12. Goeschl, J.D., Pratt, H.K., Bonner, B.A.: An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings.—Plant Physiol.42: 1077–1080, 1967.PubMedGoogle Scholar
  13. Goren, R., Palavan, N., Flores, H., Galston, A.W.: Changes in polyamine titer in etiolated pea seedlings following red light treatment.—Plant Cell Physiol.23: 19–26, 1982.Google Scholar
  14. Imaseki, H., Pjon, C.-J., Furuya, M.: Phytochrome action inOryza sativa L. IV. Red and far red reversible effect on the production of ethylene in excised coleoptiles.—Plant Physiol.48: 241–244, 1971.PubMedCrossRefGoogle Scholar
  15. Kadkade, P.G., Jopson, H.: Influence of light quality on organogenesis from the embryo-derived callus of Douglas fir (Pseudotsuga menziesii).—Plant Sci. Lett.13: 67–73, 1978.CrossRefGoogle Scholar
  16. Kadkade, P.G., Seibert, M.: Phytochrome-regulated organogenesis in lettuce tissue culture.—Nature270: 49–50, 1977.CrossRefGoogle Scholar
  17. Kumar, P.P., Thorpe, T.A.: Putrescine metabolism in excised cotyledons ofPinus radiata culturedin vitro.—Physiol. Plant.76: 521–526, 1989.CrossRefGoogle Scholar
  18. Lercari, B., Deitzer, G.: Time dependent effectiveness of far-red light on the photoperiodic induction of bulb formation inAllium cepa L.—Photochem. Photobiol.45: 831–835, 1987.CrossRefGoogle Scholar
  19. Lercari, B., Tognoni, F., Anselmo, G., Chapel, D.: Photocontrol ofin vitro bud differentiation inSaintpaulia ionantha leaves andLycopersicon esculentum cotyledons.—Physiol. Plant.67: 340–344, 1986.CrossRefGoogle Scholar
  20. Linsmaier, E.M., Skoog, F.: Organic growth factor requirements of tobacco tissue cultures.—Physiol. Plant.18: 100–127, 1965.CrossRefGoogle Scholar
  21. Malfatti, H., Vallée, J.C., Perdrizet, E., Carré, M., Martin, C.: Acides aminés et amines libres d'explants foliaires deNicotiana tabacum cultivésin vitro sur des milieux induisant la rhizogenèse ou la caulogenèse.—Physiol. Plant.57: 492–498, 1983.CrossRefGoogle Scholar
  22. Mensuali-Sodi, A., Panizza, M., Tognoni, F.: Quantification of ethylene losses in different containerseal systems and comparison of biotic and abiotic contributions to ethylene accumulation in tissue cultures.—Physiol. Plant.84: 472–476, 1992.CrossRefGoogle Scholar
  23. Panizza, M., Tognoni, F.: Clonal propagation, callus formation and plant regeneration of lavandin.— Scientia. Hort.37: 157–163, 1988.CrossRefGoogle Scholar
  24. Panizza, M., Mensuali-Sodi, A., Tognoni, F.: Role of ethylene in axillary shoot proliferation of lavandin.—Interaction with benzyladenine and polyamines.—J. exp. Bot.44: 387–394, 1993.CrossRefGoogle Scholar
  25. Pfaff, W., Schopfer, P.: Hormones are no causal links in phytochrome-mediated adventitious root formation in mustard seedlings (Sinapis alba L.).—Planta150: 321–329, 1980.CrossRefGoogle Scholar
  26. Salveit, M.E., Pharr, D.M.: Light-stimulated ethylene production by germinating cucumber seeds.— J. amer. Soc. hort. Sci.105: 364–367, 1980.Google Scholar
  27. Sanchez-Gras, M.C., Garcia-Hernandez, M., Segura, J.: Spermidine and morphogenesis in single cell cultures ofSideritis angustifolia Lag.—Plant Sci.66: 113–118, 1990.CrossRefGoogle Scholar
  28. Seibert, M., Wetherbee, P.J., Job, D.D.: The effects of light intensity and spectral quality on growth and shoot initiation in tobacco callus.—Plant Physiol.56: 130–139, 1975.PubMedGoogle Scholar
  29. Vangronsveld, J., Van Poucke, M.: The effect of red light on the ethylene biosynthesis of intact etiolated seedling.—In: Clijsters, H., De Proft, M., Marcelle, R., Van Poucke, M. (ed.): Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants. Pp. 291–302. Kluwer Academic Publishers, 1989.Google Scholar
  30. Villalobos, V.M., Leung, D.W.M., Thorpe, T.A.: Light-cytokinin interaction in shoot formation in cultured cotyledon explants of radiata pine.—Physiol. Plant.61: 497–504, 1984.CrossRefGoogle Scholar
  31. Weckx, J., Van Poucke, M.: The effect of white light on ethylene biosynthesis of intact green seedlings.—In: Clijsters, H., De Proft, M., Marcelle, R., Van Poucke, M. (ed.): Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants. Pp. 279–290. Kluwer Academic Publishers, Dordrecht 1989.Google Scholar
  32. Weis, J.S., Jaffe, M.J.: Photoenhancement by blue light of organogenesis in tobacco pith cultures.— Physiol. Plant.22: 171–176, 1969.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany 1994

Authors and Affiliations

  • M. Panizza
    • 1
  • F. Tognoni
    • 1
  • B. Lercari
    • 1
  1. 1.Dep. Biologia delle Piante AgrarieUniversity of PisaPisaItaly

Personalised recommendations