Advertisement

Biologia Plantarum

, Volume 17, Issue 6, pp 385–391 | Cite as

A kinetic study of phosphorus absorption by excised maize roots from flowing solutions with different phosphorus concentrations

  • Radmila Čížková-Macůrková
  • Z. Laštůvka
Article

Abstract

The effect of two different mechanisms of phosphorus ion transport from the nutrient solution volume to the surface areas of excised maize roots was studied under concentrations ranging from 0.01 mM to 50.0 mM KH2PO4. A modified technique of study of kinetic ion absorption was used. In the control series, the roots were placed in absorption solution without flow (the dominant mechanism of ion transport to the roots being diffusion), while in the experimental series the absorption solution was flowing round the roots at a rate of 0.162 cm s−1 (the dominant mechanism of ion transport to the roots being mass flow). The rate of phosphorus absorption by the roots from flowing solutions was highly significantly increased at all concentrations of absorption solution except for the 50.0 mM KH2PO4 concentration. The increase in phosphorus absorption in the case of 50.0 mM KH2PO4 concentration was non-significant due to the fact that the high concentration of phosphorus together with the diffusion of phosphorus ions ensured a sufficient supply of phosphorus to the roots, covering the requirement for their uptake.

The results point to the need for an analysis of environmental factors to be carried out in studying ion absorption kinetics, and reveal the inadequacy of methods usually employed in such investigations, in particular with respect to the homogeneity of the nutrient solution in the whole of its volume and especially round the roots.

Keywords

Phosphorus Absorption Barley Root Phosphorus Diffusion Flow Round Excise Maize Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Kinetická studie absorpee fosforu odřezanými kořeny kukuřice z proudících roztoků o různé koncentraci fosforu

Abstract

Byl sledován efekt dvou rozdílných mechanismů transportu iontů fosforu z objemu živného roztoku k povrchům odřezaných kořenů kukuřice v koncentračním rozpětí 0,01 mM až 50,0 mM KH2PO4. Byla použita modifikovaná metodika studia kinetiky absorpce iontů. V kontrolní sérii byly kořeny umístěny v absorpčním roztoku bez pohybu (dominantním mechanismem transportu iontů ke kořenům je difuse), v pokusné sérii proudil absorpční roztok kolem kořenů rychlostí 0,162 cm s−1 (dominantním mechanismem transportu iontů ke kořenům je mass flow). Míra absorpce fosforu kořeny z proudícího roztoku byla vysoce průkazně zvýšena při všech koncentracích absorpčních roztoků mimo koncentraci 50,0 mM KH2PO4. Zvýšení absorpce fosforu pří koncentraci 50,0 mM KH2PO4 bylo neprůkazné proto, poněvadž vysoká koncentrace fosforu spolu s difusí fosforečných iontů zabezpečovala dostateěnou dodávku fosforu ke kořenům, pokrývající požadavek jejich příjmu.

Výsledky ukazují na nutnost analýzy faktorů vnějšího prostředí při studiu kinetik absorpce iontů a na neadekvátnost obvykle používaných metodik při těchto studiích, především z hlediska homogenity živného roztoku v celém objemu a zvláště kolem kořenů.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, S. A.: A diffusion and mass flow concept of soil nutrient availability.—Soil Sci.93: 39–49, 1962.CrossRefGoogle Scholar
  2. Briggs, G. E., Hope, A. B., Robertson, R. N.: InJames, W. O. (ed.): Electrolytes and Plant Cells.—Blackwells, Oxford 1961.Google Scholar
  3. Carter, O. G., Lathwell, D. J.: Effects of temperature on ortophosphate absorption by excised corn roots.—Plant Physiol.42: 1407–1412, 1967.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Edwards, D. G.: Phosphate absorption and long-distance transport in wheat seedlings.— Aust. J. biol. Sci.23: 255–264, 1970.Google Scholar
  5. Epstein, E.: The essential role of calcium in selective cation transport by plant cells.—Plant Physiol.36: 437–444, 1961.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Epstein, E., Hagen, C. E.: A kinetic study of the absorption of alkali cations by barley roots.— Plant Physiol.27: 457–474, 1952.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Epstein, E., Rains, D. W., Elzam, O. E.: Resolution of dual mechanisms of potassium absorption by barley roots.—Proc. nat. Acad. Sci.49: 684–692, 1963a.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Epstein, E., Schmied, W. E., Rains, D. W.: Significance and technique of short-term experiments on solute absorption by wheat tissue.—Plant Cell Physiol.4: 79–84, 1963b.Google Scholar
  9. Fried, M., Shapiro, R. E.: Soil-plant relationships in ion uptake.—Annu. Rev. Plant Physiol.12: 91–112, 1961.CrossRefGoogle Scholar
  10. Fryer, H. C.: Elements of Statistics.—New York 1957.Google Scholar
  11. Hagen, C. E., Hopkins, H. T.: Ionic species in orthophosphate absorption by barley roots.— Plant Physiol.30: 193–199, 1955.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hagen, C. E., Leggett, J. E., Jackson, P. C.: The sites of orthophosphate uptake by barley roots.—Proc. nat. Acad. Sci.43: 496–506, 1957.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hai, T. V., Laudelout, H.: Phosphate uptake by intact rice plants by the continuous flow method at low phosphate concentrations.—Soil Sci.101: 408–417, 1966.CrossRefGoogle Scholar
  14. Hannapel, R. J., Fuller, W. H., Bosma, Shirley, Bullock, J. S.: Phosphorus movement in calcareous soil.—Soil Sci.97: 350–357, 1964.CrossRefGoogle Scholar
  15. Jacobson, L., Hannapel, R. J., Moore, D. P., Schaedle, M.: Influence of calcium on selectivity of ion absorption process.—Plant Physiol.36: 58–61, 1961.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jeschke, W. D., Simonis, W.: Über die Aufnahme von Phosphat- und Sulfationen durch Blätter vonElodea densa und ihre Beeinflussung durch Licht, Temperatur und Aussenkonzentration. —Planta67: 6–32, 1965.CrossRefGoogle Scholar
  17. Lewis, D. G., Quirk, J. P.: Phosphate diffusion in soil and uptake by plants. I.–IV.—Plant Soil26: 99–468, 1967.CrossRefGoogle Scholar
  18. Macůrková, R., Laštůvka, Z.: Maize growth and ion absorption in Richter's solution at different flow rates.—Biol. Plant.14: 103–111, 1972.CrossRefGoogle Scholar
  19. Mahtab, S. K., Godfrey, C. L., Swoboda, A. R., Thomas, G. W.: Phosphorus diffusion in soils. I. The effect of applied P, clay content and water content.—Proc. Soil Sci. Soc. Amer.35: 393–397, 1971.CrossRefGoogle Scholar
  20. Mahtab, S. K., Swoboda, A. R., Godfrey, C. L.: Phosphorus diffusion in soils. II. The effect on phosphorus uptake by plant.—Proc. Soil Sci. Soc. Amer.36: 55–57, 1972.CrossRefGoogle Scholar
  21. Newman, E. I., Andrews, R. E.: Uptake of P and K in relation to root growth and root denaity. —Plant Soil38: 49–69, 1973.CrossRefGoogle Scholar
  22. Nielsen, N. E.: A transport kinetic concept of ion uptake from soil by plants.—Plant Soil36: 505–520, 1972.CrossRefGoogle Scholar
  23. Noggle, J. C., Fried, M.: A kinetic analysis of phosphate absorption by excised roots of millet, barley and alfalfa.—Proc. Soil Sci. Soc. Amer.24: 33–35, 1960.CrossRefGoogle Scholar
  24. Olsen, S. R., Kemper, W. D., Van Schaik, J. C.: Self diffusion coefficients of phosphorus in soil measured by transient and steady-state methods.—Proc. Soil. Sci. Soc. Amer.29: 154–158, 1965.CrossRefGoogle Scholar
  25. Palátová, E., Laštůvka, Z.: Growth of maize plants in flowing medium with different levels of iron.—Biol. Plant.16: 241–249, 1974.CrossRefGoogle Scholar
  26. Phillips, R. E., Baker, D. E., Clagett, C. O.: Identification of compounds which açcount for variation in P concentration in corn hybrids.—Agron. J.63: 541–543, 1971.CrossRefGoogle Scholar
  27. Phillips, R. E., Peasle, D. E.: Effect of chemical pretreatment of kaolinite clay upon the apparent self diffusion of phosphorus-32.—Proc. Soil Sci. Soc. Amer.34: 743–746, 1970.CrossRefGoogle Scholar
  28. Phillips, R. E., Place, G. A., Brown, D. A.: Self diffusion of phosphorus in clays and soils.— Proc. Soil Sci. Soc. Amer.32: 41–44, 1968.CrossRefGoogle Scholar
  29. Place, G. A., Phillips, R. E., Brown, D. A.: Self diffusion of phosphorus in clays and soil.— Proc. Soil Sci. Soc. Amer.32: 657–660, 1968.CrossRefGoogle Scholar
  30. Tanada, T.: Kinetics of Rb absorption by excised barley roots under changing Rb concentrations. —Plant Physiol.39: 593–597, 1964.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ulrich, B., Oberländer, H. E.: Theoretische Betrachtungen über enzymkinetische Interpretation der Ionenaufnahme durch Pflanzen.—Plant Soil21: 26–36, 1964.CrossRefGoogle Scholar
  32. Welch, R. M., Epstein, E.: The plasmalemma: seat of the type 2 mechanisms of ion absorption. —Plant Physiol.44: 301–304, 1969.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Institute of Experimental Botany 1975

Authors and Affiliations

  • Radmila Čížková-Macůrková
    • 2
  • Z. Laštůvka
    • 1
  1. 1.Department of Plant BiologyFaculty of Sciences J. E. Purkyně UniversityBrno
  2. 2.Department of Forest BiologyBotanical Institute of the Czechoslovak Academy of SciencesBrno 3Czechoslovakia

Personalised recommendations