Advertisement

Biologia Plantarum

, Volume 14, Issue 1, pp 71–81 | Cite as

Function of phenolic substances in the degradation system of indole-3-acetic acid in strawberries

  • Liya V. Runkova
  • Elwira K. Lis
  • M. Tomaszewski
  • R. Antoszewski
Article

Abstract

The homogenate of different strawberry organs inhibits the degradation of IAA in the presence of horse radish peroxidase, while intact strawberry tissues are able to degrade IAA. The chemical nature of peroxidase inhibitors present, in strawberry tissues was in vestigated. Using paper chromatography the following polyphenolic substances inhibiting peroxidase activity were identified: chlorogenic, caffeic, ellagic, gentisic, gallic, and vanillic acids, quercetin and pelarginidin. Monophenolic compounds, also present in strawberry, such as p-hydroxy-phenyloacetic acid and p-hydroxybenzoic acid, are strong stimulators of IAA oxidase. Abscisic acid in very high concentration (1×10−4M) enhances degradation of IAA by peroxidase.

When both poly-and monophenolic compounds at equimolar concentrations are present in the system, only the inhibition of IAA degradation occurs.

Tissue explants from the strawberry leaves and petiole degrade less IAA if they are previously forced to synthetize more polyphenols under illumination. Although the difference in IAA-decarboxylation activity between the illumination and dark treated explants was relatively small, nevertheless it was consistent and appears to be very important from a physiological point of view suggesting that there exists a regulatory relationin vivo between IAA degradation and the presence of phenolsin plant tissue.

Electron microscope data revealed that phenolic substances are specially isolated from cytoplasm of the receptacle cells.

Keywords

Chlorogenic Acid Phenolic Substance Strawberry Fruit Abietic Acid Traumatic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Funkce fenolických látek v degradačním systému kyseliny in dolyl-3-octové u jahodníku

Abstract

Homogenáty z různých orgánů jahodníku inhibují odbourávání IOK za přítomnosti peroxidasy isolované z křenu, kdežto intaktní pletiva jahodníku jsou schopna odbourávat IOK. Chemická povaha inhibitorů peroxidasy v pletivech jahodníku byla studována papírovou chromatografií a byly identifikovány tyto fenolické látky: kyseliny chlorogenová, kávová, alagová, gentisová, galová a vanilová, kvercetin a pelargonidin. Monofenolické sloučeniny, rovněž přítomné v jahodníku, jako kyseliny p-hydroxyfenyloctová a p-hydroxybenzoová, jsou silnými stimulátory oxidasy kyseliny indolyloctové. Kyselina abscisová ve vysokých koncentracích (10−4 M) zvyšuje degradaci IOK peroxidasou. Jsou-li v systému přítomny poly i monofenolické sloučeniny v ekvimolární koncentraci, dochází pouze k inhibici odbourávání IOK.

Explantáty pletiv z listů a řapíků odbourávají IOK pouze v tom případě, když předem syntetisovaly fenolické látky v podmínkách osvětlení. Ačkoliv rozdíly v aktivitě dekarboxylace IOK mezi explantáty po působení světla nebo tmy byly relativně malé, byly stálé a zdají se být z fysiologického hlediska důležité. Naznačují, žein vitro existuje regulační vztah mezi odbouráváním IOK a přítomností fenolů v rostlinných pletivech.

Elektron-mikroskopické údaje ukazují, že fenolické látky se isolují zvláště z cytoplasmy buněk květního lůžka.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, Y., Hayashi, K.: Further studies on paper chromatography of anthocyanins, involving an examination of glycoside types by partial hydrolysis.—Bot. Mag. (Tokyo)69: 517–585, 1956.Google Scholar
  2. Agatova, A. I., Vartanyan, L. S., Gonikberg, E. M., Emanuel N. M.: [Influence of polyphenols on enzymes.] in Russ.—In: Fenolnye soedineniya i ikh biologicheskie funktsii. Pp. 146–153. Nauka, Moskva 1969.Google Scholar
  3. Birkofer, L., Kaiser, C., Nouvertné, W., Thomas, K.: Natürlich vorkommende Zuckerester von Phenoloarbosäuren.—Z. Naturforsch.16: 249–251, 1961.CrossRefGoogle Scholar
  4. Bate-Smith E. C., Metcalf, C. R.: Leucoanthocyanins.—J. Linn. Soc. (Bot.)55: 669–705, 1957.CrossRefGoogle Scholar
  5. Bate-Smith, E. C.: The phenolic constituents of plants and their taxonomic significance.— J. Linn. Soc. (Bot.)58: 95–173, 1961.CrossRefGoogle Scholar
  6. Creasy L. L., Maxie E. C., Singleton, V. L.: Characterization of flavonoids inFragaria.— Ann. Soc. hort. Sci.95: 325–331, 1964.Google Scholar
  7. Creasy, L. L., Maxie, E. C., Chichester, C. D.: Anthocyanin production in strawberry leaf discs.—Phytochemistry4: 517–521, 1965.CrossRefGoogle Scholar
  8. Creasy, L. L., Swain, T.: Flavon production in strawberry leaves.—Phytochemistry5: 501–509, 1966.CrossRefGoogle Scholar
  9. Dzięcioł U., Antoszewski R.: Peroxidase activity of strawberry receptacle as determined by chemiluminescence.—Biol. Plant.11: 457–464, 1969.CrossRefGoogle Scholar
  10. Gortner, W. A., Kent, M. J.: The coenzyme requirement and enzyme inhibitors of pineapple indoleacetic acid oxidase.—J. biol. Chem.233: 731–735, 1958.PubMedGoogle Scholar
  11. Gustafson, F. G.: The cause of natural parthenocarpy.—Amer. J. Bot.26: 135–138, 1939.CrossRefGoogle Scholar
  12. Hermann, K.: Über das Vorkommen von Katechinen in den Blättern einiger Beerenobstarten.— Naturwissenschaften19: 621–622, 1961.CrossRefGoogle Scholar
  13. Larsen P.: On the separation of acidic and non-acidic auxins.—Physiol. Plant.8: 343, 1955.CrossRefGoogle Scholar
  14. Leike, H.: Growth regulators in dormancy of tree seeds.—Proc. Third Symp. on Plant Growth Reg., Copernicus Univ., Toruń 1968.Google Scholar
  15. Levis, L. N., Kalifah, R. A., Goggins, C. W. jr.: The existence of the non-indolic citrus auxin in several plant families.—Phytochemistry4: 203–205, 1965.CrossRefGoogle Scholar
  16. Loewenberg, J. R.: Promotion of indoleacetic acid destruction by citric acid and L-alanine.— Plant Physiol.18: 31–40, 1965.CrossRefGoogle Scholar
  17. Mapson, L. W.: Photooxidation of ascorbic acid in leaves.—Bioch. J.85: 360–369, 1962.CrossRefGoogle Scholar
  18. Meister, A.: Biochemistry of the Amino Acids.—Academic Press, New York 1957.Google Scholar
  19. Nitsch, J. P.: Growth and morphogenesis of the strawberry as related to auxin.—Amer. J. Bot.37: 211–215, 1950.CrossRefGoogle Scholar
  20. Nitsch, J. P.: Free auxins and free tryptophane in the strawberry.—Plant Physiol.30: 33–39, 1955.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Okasha, K. A., Ryugo, K., Wilhelm, S., Bringhurst, R. S.: Inhibition of growth ofVerticillium albo-atrum sporelings by tannins and polyphenols from infected crown ofVerticillium-resistant and susceptible strawberry cultivars.—Phytopathology58: 1114–1117, 1968.Google Scholar
  22. Palade, G. E.: A study of fixation for electron microscopy.—J. exp. Med.95: 285, 1952.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Pilet, P. E.: Effect of chlorogenic acid in the auxin catabolism and auxin content of root.— Phytochemistry3: 617–621, 1964.CrossRefGoogle Scholar
  24. Pilet, P. E.: Action of traumatic acid on the growth, the auxin catabolism and the auxin content.—Physiol. Plant.18: 1121–1129, 1935.CrossRefGoogle Scholar
  25. Plotnikova, I. V., Runkova, L. V., Ugolik, N. A.: [Effect of polyphenols on IAA induced growth of wheat coleoptiles.] in Russ.—Byull. glavn. bot. Sada (Moskva)68: 57–63, 1968.Google Scholar
  26. Rudnicki, R., Antoszewski, R.: The labelling of abscisic acid (dormin) with carbon-14 in strawberry by means of photosynthesis.—Bull. Pol. Acad. Sci. Ser. V,17 (7): 447–449, 1968.Google Scholar
  27. Runeckles, V. C.: Formation of sugars from phenylpropanoid compounds in tobacco leaf disks.—Canad. J. Bot.41: 823–829, 1963.CrossRefGoogle Scholar
  28. Sarapuu, L. P., Kefeli, V. I.: [Phenol compounds and plant growth.] in Russ.—In: Fenolnye soedineniya i ikh biologicheskie funktsii. Pp. 129–138. Nauka, Moskva 1969.Google Scholar
  29. Saunders, B. C., Holmes-Siedle, A. G., Stark, B. P.: Peroxidase.—Butterworths, London 1964.Google Scholar
  30. Sondheimer, E., Karash, C. B.: The major anthocyanin pigments of the wild strawberry (Fragaria vesca).—Nature178: 648, 1956.CrossRefGoogle Scholar
  31. Swain, T., Hillis, W. E.: The phenolic constituents ofPrunus domestica I. The quantitative analysis of phenolic constituents.—J. Sci. Food Agric.10: 63–68, 1959.CrossRefGoogle Scholar
  32. Taylor, A. O., Zucker, M.: Turnover and metabolism of chlorogenic acid inXanthium leaves and potato tubers.—Plant Physiol.41: 1350–1359, 1966.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Tomaszewska, E.: The naturally occurring regulators of leaf abscission inDeutzia Thurb.— Arboretum Kórnickie13: 173–215, 1968.Google Scholar
  34. Tomaszewska, E., Tomaszewski, M.: Endogenous growth regulators in fruit and leaf abscission.— Trans. of the Third Symposium on Plant Growth Regulators. Copernicus University, Toruń 1968.Google Scholar
  35. Tomaszewski, M.: The occurrence of p-hydroxybenzoic acid and some other simple phenols in vascular plants.—Bull. Acad. Pol. Sci., Cl. Biol.8: 61–65, 1960.Google Scholar
  36. Tomaszewski, M.: The mechanism of synergistic effect between auxin and some natural phenolic substances.—Coll. Internat. C.N.R.S., Paris123: 335–351, 1964.Google Scholar
  37. Zaprometov, M. P., Bukhlaeva, V. Ya.: [Transfomation of14C labelled phenol substances in isolated shoots of tea plant.] in Russ.—Fiziol. Rast.15: 457–463, 1968.Google Scholar
  38. Zucker M., Ahrens, J. F.: Quantitative assay of chlorogenic acid and its pattern of distribution within tobacco leaves.—Plant Physiol.33: 246–249, 1958.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Zucker, M.: The influence of light on synthesis of protein and of chlorogenic acid in potato tuber tissue.—Plant Physiol.38: 575–580, 1963.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Institute of Experimental Botany 1972

Authors and Affiliations

  • Liya V. Runkova
    • 3
  • Elwira K. Lis
    • 1
  • M. Tomaszewski
    • 2
  • R. Antoszewski
    • 1
  1. 1.Research Institute of PomologySkierniewicePoland
  2. 2.Kornik ArboretumPoland
  3. 3.Botanical GardenAcad. Sci. USSRMoscowUSSR

Personalised recommendations