Advertisement

Biologia Plantarum

, 10:58 | Cite as

On the catabolic pathways of sugars in green algae

  • J. Dvořáková-Hladká
Article

Abstract

Respiratory metabolism of the cultures of algaeChlorella pyrenoidosa (82) andScenedesmus obliquus (125) was investigated. One part of algae were cultivated on a mineral nutrient solution, another two parts on the solution with glucose and on the solution with glucose and yeast decoction. Individual steps of respiratory metabolism—endogenous as well as in the presence of exogenous sugars—were estimated according to the response to the following inhibitors: monoiodacetate, NaF, NaN3, and 2,4-DNP. In the last two cases, fructose, glucose-6-phosphate and fructose-1,6-diphosphate were applied in parallel for comparison. Na-monoiodacetate was found to inhibit the respiration of both endogenous and exogenous (with glucose) substrates, NaF (concentrations up to 2.5.10−2 m) stimulated the O2 uptake. The effect of sodium azide and 2,4-DNP depended in both strains on previous cultivation. On the basis of the results obtained, the presence of particular respiration pathways in the dissimilation of glucose is discussed. The following catabolic processes are to be considered: a) direct oxidation (with both autotrophically cultivated strains and with theChlorella cultivated on glucosecontaining medium), b) the process similar to glycolysis, which, however, does not necessarily involve the enolase (it is not inhibited by NaF) c) pentosephosphate cycle (Chlorella), and d) glycolysis, in which both algae can operate when sugars previously phosphorylated are applied.

Keywords

Fructose Catabolic Pathway Exogenous Substrate Respiratory Metabolism Substrate Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

K otázce cest katabolismu cukrů u zelených řas

К вопросу нутей катаболизма сахаров у зеленых водорослей

Abstract

Byl sledován respirační metabolismus u kultur řasChlorella pyrenoidosa (82) aScenedesmus obliquus (125), kultivovaných jednak na minerálním živném roztoku, jednak na témže roztoku a glukosou a na roztoku s glukosou a odvarem z kvasnic. Jednotlivé stupně respiračního metabolismu endogenního i v přítomnosti exogenně aplikovaných cukrů byly stanoveny podle reakee na inhibitory: monojodacetát, NaF, Na-azid a 2,4 DNP. Pro srovnání byly paralelně aplikovány při posledních dvou inhibitorech fruktosa a fosforylované cukry glukoso-6-fosfát a fruktoso-1,6-difosfát. Na-monojodacetát inhibuje dýchání jak endogenního, tak exogenního (s glukosou) substrátu. NaF (v konc. až 2,5. 10−2 m) příjem O2 zvyšuje. Vliv azidu a 2,4 DNP je u obou řas určen předběžnou kultivací. Na základê toho je v práci diskutováno o možné účasti jednotlivých respiračních cest v dissimilaci glukosy. V zásadě je možno počítat s těmito cestami katabolismu: a) přímá oxidace (zvláště obě autotrofně kultivované řasy aChlorella kultivovaná na půdě s glukosou), b) cesta, podobná glykolyse, která však nutně nezahrnuke enolázu (neinhibuje NaF), c) pentofosfátovým cyklem (Chlorella) a obě řasy d) glykolyticky jsou schopny katabolovat jen již fosforylovaný cukr.

Abstract

В настоящей работе я хотела установить, какими путями метаболизируется глюкоза, которая является хорошим субстратом для роста и активирует дыхание при добавлении извне. Для определения отдельных звеьев я применила обычные ингибиторы. Натриймонойодацетат ингибирует дыхание как эндогенного так и экзогенного субстрата. Фтористый натрий (в концентрации до 2,5. 10−2 m) повышает потребление O2. Влияние ааида и 2,4 DNP у обеих водорослей зависит от предшествующей культивации. На основании этого в работе обсуждается возможное участие отдельных дыхательных путей в процессе диссимиляции глюкозы. В принципе можно считать осуществимыми следующие пути катаболизма сахаров: a) прямое окисление (особенно у обеих автотрофно культивируемых водорослей и уChlorella культивированной на среде с глюкозой), б) путь подобный гликолизу но не обязательно включающий энолазу (не ингибируется NaF), в) пентозофосфатным циклом (Chlorella) и обе водоросли способны г) гликолитически метаболизировать лишь фосфорилированный сахар.

References

  1. Dvořáková-Hladká, J.: Utilization of organic substrates during mixotrophic and heterotrophic cultivation ofAlgae.—Biol. Plant.8: 354–361, 1966.Google Scholar
  2. Dvořáková-Hladká, J.: The role of sugars in the respiration of differently cultivated greenAlgae.—Biol. Plant.9: 340–353, 1967.Google Scholar
  3. Dvořáková-Hladká, J., Baslerová, M.: Nahrazení peptonu Witte odvarem z droždí při kultivaciChlorella vulgaris, Ch. protothecoides aCh. xanthella. [The replacement of Witte-pepton by yeast decoct.]—Čs. Biol.6: 232–237, 1957.Google Scholar
  4. Emerson, R.: The effect of certain respiratory inhibitors on the respiration ofChlorella.— J. Gen. Physiol.10: 469–477, 1926.CrossRefGoogle Scholar
  5. Emerson, R., andGreen, L.: Effect of hydrogen ion concentration onChlorella photosynthesis. —Plant Physiol.13: 157–168, 1938.PubMedGoogle Scholar
  6. Fogg, E. G.: The Metabolism of Algae.—London Methuen 1953.Google Scholar
  7. French, C. S., Kohn, H. J. andTang, P. S.: Temperature characteristics for the metabolism ofChlorella II. The role of respiration of cultures of Chlorella pyrenoidosa as a function of time and of temperature.—J. gen. Physiol.18: 193–207, 1934.CrossRefGoogle Scholar
  8. Hackett, D. P.: Respiratory inhibitors. In:Ruhland, W. (ed.): Handb. d. Pflanzenphysiol.XII/2: 23–41.—Springer-Verlag, Göttingen; Berlin, Heidelberg—1960.Google Scholar
  9. Hartree, E. F.: Cytochrome in higher Plants.—Adv. Enzymol.18: 1–64, 1957.Google Scholar
  10. James, W. O.: Plant Respiration.—Oxford, Clarendon Press 1953.Google Scholar
  11. Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthese II. Gesteigerter Glucoseeinbau im Licht als Indikator einer lichtabhängigen Phosphorilierung.—Ztschr. Naturforsch.9b: 625–644, 1954.Google Scholar
  12. Kandler, O.: Über die Beziehung zwischen Phosphathaushalt und Photosynthese. III. Hemmungsanalyse der lichtabhängigen Phosphorylierung.—Ztschr. Naturforsch.106: 38–46, 1955.Google Scholar
  13. Kandler, O.: The effect of 2,4-dinitrofenol on respiration, oxidative assimilation and photosynthesis inChlorella.—Physiol. Plant.11: 675–684, 1958.CrossRefGoogle Scholar
  14. Kleinzeller, A., Málek, J., Vrba, R.: Manometrické metody a jejich použití vi biologii a biochemii. [Manometrical methods and their application in biology and biochemistry.]—Stat. zdrav. nakl., Praha 1954.Google Scholar
  15. McNulty, I. B., Lords, J. L.: Possible explanation of fluoride induced respiration inChlorella pyrenoidosa.—Science132: 1553–1554, 1960.PubMedCrossRefGoogle Scholar
  16. Moses, V., Syrett, P. J.: The endogenous respiration of microorganisms.—J. Bact.70: 201–203, 1955.PubMedGoogle Scholar
  17. Oaks, A.: Influence of glucose and light on pyruvate metabolism by starved cells ofChlorella ellipsoidea.—Plant Physiol.37: 316–322, 1962.PubMedGoogle Scholar
  18. Reazin, G. H., Jr.: The metabolism of glucose by the AlgaOchromonas malhamensis.—Plant. Physiol.31: 299–303, 1956.PubMedGoogle Scholar
  19. Roos, C. W., Wiebe, H. H., Miller, G. W.: Effect of fluoride on glucose catabolism in plant leaves.—Plant Physiol.37: 305–309, 1962.CrossRefGoogle Scholar
  20. Simon, E. W., Beevers, H.: The effect of pH on the biological activities of weak acids and bases. I. The most usual relationship between pH and activity.—New Phytol.51 163–167, 1952.CrossRefGoogle Scholar
  21. Sorokin, C., Myers, J.: Time course of respiration during the life cycle ofChlorella cells.— J. Gen. Physiol.40: 579–592, 1957.PubMedCrossRefGoogle Scholar
  22. Stoppani, A. V. M., Ramos, E. H., Winduczynski, I. Bennun, A., De Pahn, E. M.: Acción del 2,4-dinitrofenol sobre oxidación de substratos endogénos y exógenos por la levadura Saccharomyces cerevisiae. [The effect of 2,4-dinitrophenol on the oxidation of endogenous and exogenous substrates in the yeastSaccharomyces cerevisiae.]—Symp. on the Use of Radioisotopes in Anim. Biol. and Med. Sci., Mexico City, 1961.Google Scholar
  23. Taylor, F. J.: Oxidative Assimilation of Glucose byScenedesmus quadricauda.—J. expt Bot.1: 302–321, 1950.CrossRefGoogle Scholar
  24. Ting, I. P., Dugger, W. M.: Transhydrogenation in root tissue: Mediation by carbon dioxide.— Science150: 28, 1965.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany 1968

Authors and Affiliations

  • J. Dvořáková-Hladká
    • 1
  1. 1.Collection of Cultures of Autotrophic Organisms, Institute of Experimental BotanyCzechoslovak Academy of SciencesPraha

Personalised recommendations