Advertisement

Applied Biochemistry and Biotechnology

, Volume 34, Issue 1, pp 767–776 | Cite as

Interactions of thiophenes and acidophilic, thermophilic bacteria

  • Magda Constanti
  • Jaume Giralt
  • Albert Bordons
  • Paul R. Norris
Session 5 Biotechnology, Bioengineering, and Environmental Problems

Abstract

The growth and oxygen consumption of a variety of thermophilic, acidophilic bacteria in the presence of thiophene-2-carboxylate (T2C) and dibenzothiophene (DBT) have been determined. T2C was extremely toxic to the acidophiles in comparison with neutrophiles, but appeared to be degraded by a heterotrophicSulfolobus- like thermophile. DBT proved to be unstable at high temperatures, even in the absence of bacteria, and was not a substrate for the thermophiles.

Index Entries

Sulfolobus solfataricus thermophilic acidophiles dibenzothiophene thiophene-2-carboxylate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bos, P. and Kuenen, J. G. (1990),Microbial Mineral Recovery, Ehrlich, H. L. and Brierley, L., eds., McGraw-Hill, New York, pp. 343–377.Google Scholar
  2. 2.
    Finnerty, W. R. and Robinson, J. M. (1986),Biotech. Bioeng. Symp. 16, 205–221.Google Scholar
  3. 3.
    Boudou, J. P., Boulegue, J., Malechaux, L., Nip, M., de Leeuw, J. W., and Boon, J.J. (1987),Fuel 66, 1558–1569.CrossRefGoogle Scholar
  4. 4.
    Detz, M. and Barvinchak, G. (1979),Min. Congress. J. 65, 75–86.Google Scholar
  5. 5.
    Kargi, F. and Robinson, J. M. (1982),Appl. Environ. Microbiol. 44, 878–883.Google Scholar
  6. 6.
    Kargi, F. and Robinson, J. M. (1984),Biotech. Bioeng. 26, 687–690.CrossRefGoogle Scholar
  7. 7.
    Marsh, R. M, Norris, P. R., and Le Roux, N. W. (1983),Recent Progress in Biohydrometallurgy, Rossi, G. and Torma, A. E., eds., Associazione Mineraria Sarda, Iglesias, p. 71–81.Google Scholar
  8. 8.
    Grogan, D. W. (1989),J. Bacteriol. 171, 6710–6719.Google Scholar
  9. 9.
    Norris, P. R. (1990),Microbial Mineral Recovery, Ehrlich, H. L. and Brierley, L., eds., McGraw-Hill, New York, pp. 3–27.Google Scholar
  10. 10.
    Kanagawa, T. and Kelly, D. P. (1987),Microb. Ecol. 13, 47–57.CrossRefGoogle Scholar
  11. 11.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265–275.Google Scholar
  12. 12.
    Alexander, B Leach, S., and Ingledew, J. W. (1987),J. Gen. Microbiol. 133, 1171–1179.Google Scholar
  13. 13.
    Mormile, M. R. and Atlas, R. M. (1988),Appl. Environ. Microbiol. 54, 3183–3184.Google Scholar
  14. 14.
    Van Afferden, M., Schacht, S., Klein, J., and Trüper, H. G. (1990),Arch. Microb. 153, 324–328.CrossRefGoogle Scholar
  15. 15.
    Evans, J. and Venables, W. A. (1990),Appl. Microbiol. Biotechnol. 32, 715–720.CrossRefGoogle Scholar
  16. 16.
    Amphlett, M. J. and Callely, A. G. (1969),Biochem. J. 112, 12P.Google Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • Magda Constanti
    • 1
  • Jaume Giralt
    • 1
  • Albert Bordons
    • 1
  • Paul R. Norris
    • 2
  1. 1.Department of Chemical and Biochemical EngineeringUniversity of BarcelonaTarragonaSpain
  2. 2.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations