Applied Biochemistry and Biotechnology

, Volume 34, Issue 1, pp 487–498 | Cite as

The one-dimensional biocatalyst

A research tool for in situ analysis of immobilized-cell biocatalysts
  • R. M. Worden
  • L. G. Berry
Session 3 Bioprocessing Research


A new method to culture and analyze cells entrapped in porous gels has been developed that enables the properties of living, immobilized cells to be measured in situ as a function of depth within the gel. The method employs scanning fluorescence microscopy, which can provide rapid, sensitive, noninvasive measurements with a resolution of 1 mn. Any chemical species or cellular component that can be fluorescently marked can, in principle, be studied using this technique. Two applications of the approach are illustrated: measurement of transient diffusion rates within calcium alginate gel and monitoring growth of immobilized Escherichia coli cells.


Apply Biochemistry Draft Tube Fluorescence Profile Fluorescent Stain Continuous Bioreactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scott, C. D. (1987),Enz. and Microb. Tech. 9, 66.CrossRefGoogle Scholar
  2. 2.
    Fukui, S. and Tanaka, A. (1982),Ann. Rev. Microbiol. 36, 145.CrossRefGoogle Scholar
  3. 3.
    Chibata, I., Tosa, T., and Fujimura, M. (1983),Annual Reports on Fermentation Processes, vol. 6, Academic, New York, 1.Google Scholar
  4. 4.
    Borglum, B. G. and Marshall, J. J. (1984),Appl. Biochem. and Biotech. 9, 117.CrossRefGoogle Scholar
  5. 5.
    Blanch, H. W. (1984),Annual Reports on Fermentation Processes, vol.7, Academic, New York, p. 81.Google Scholar
  6. 6.
    Furaske, S., Seki, M., and Fukumura, K. (1983),Biotech. and Bioeng. 25, 2921.CrossRefGoogle Scholar
  7. 7.
    Alleman, J. E., Viel, J. A., and Canaday, J. T. (1982),Water Res. 16, 543.CrossRefGoogle Scholar
  8. 8.
    Burrill, H. B., Bell, L., Greenfield, P. F., and Do, D. D. (1983),Appl. and Environ. Microbiol. 46, 716.Google Scholar
  9. 9.
    Fletcher, M. (1986),Appl. and Env. Micro. 52, 672.Google Scholar
  10. 10.
    Tyagi, R. D. and Ghose, T. K. (1982),Biotech. and Bioeng. 24, 781.CrossRefGoogle Scholar
  11. 11.
    Kjelleberg, S., Humphrey, B. A., and Marshall, K. C. (1982),Appl. and Envir. Micro. 43, 1166.Google Scholar
  12. 12.
    Kirchman, D. and Mitchell, R. (1982),Appl. and Envir. Micro. 43, 200.Google Scholar
  13. 13.
    Hattori, R. (1972),J. Gen. Appl. Microbiol. 18, 319.CrossRefGoogle Scholar
  14. 14.
    Marin-Iniesta, F., Nasri, M., Dhulster, P., Barbotin, J., and Thomas, D. (1988),Appl. Microb. Biotechnol. 28, 455.CrossRefGoogle Scholar
  15. 15.
    Marin-Iniesta, F., DeTaxis du Poet, P., Dhulster, P., Thomas, D., and Barbotin, J. (1987),Ann. N.Y. Acad. Sci. 501, 317.CrossRefGoogle Scholar
  16. 16.
    Oriel, P. (1988),Enz. and Microb. Tech. 10, 517.Google Scholar
  17. 17.
    Bailey, K., Wieth, W. R., and Chotani, G. K. (1987),Ann. N.Y. Sci. 506, 196.CrossRefGoogle Scholar
  18. 18.
    Benefield, L. and Molz, F. (1983),Biotech. and Bioeng. 25, 2591.CrossRefGoogle Scholar
  19. 19.
    Benefield, L. and Molz, F. (1985),Biotech. and Bioeng. 27, 921.CrossRefGoogle Scholar
  20. 20.
    Andrews, G. F. (1982),Biotech. and Bioeng. 26, 2013.CrossRefGoogle Scholar
  21. 21.
    Park, Y., Davis, M. E., and Wallis, D. A. (1984),Biotech. and Bioeng. 26, p. 457.CrossRefGoogle Scholar
  22. 22.
    Tang, W. T. and Fan, L. S. (1985), Steady State Phenol Biodegradation in a Draft Tube Gas-Liquid-Solid Fluidized Bed Bioreactor,” paper presented at 190th ACS National Meeting, Chicago, IL, September 8–14.Google Scholar
  23. 23.
    Mellick, M. R., Karim, M. N., Linde, B. E., Dale, B. E., and Mihaltz, P. (1986),Biotech. and Bioeng. 29, 370.CrossRefGoogle Scholar
  24. 24.
    Park, Y., Davs, M. E., and Wallis, D. A. (1984),Biotech. and Bioeng. 26, 468.CrossRefGoogle Scholar
  25. 25.
    Doran, P. M. and Bailey, J. E. (1987),Biotech. and Bioeng. 29, 892.CrossRefGoogle Scholar
  26. 26.
    Monbouquette, H. F. and Ollis, D. F. (1988),Bio/Techhnology 6, 1076.CrossRefGoogle Scholar
  27. 27.
    Johansen, A. and Flink, J. M. (1986),Biotech. Letters,8, 121.CrossRefGoogle Scholar
  28. 28.
    Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960),Transport Phenomena, John Wiley, New York, p. 125Google Scholar
  29. 29.
    Hannoun, B. J. M. and Stephanopoulos, G. (1986),Biotech. and Bioeng. 28, 829.CrossRefGoogle Scholar
  30. 30.
    Petersen, J. N., Davison, B. H., and Scott, C. D. (1991),Biotech. and Bioeng. 37, 386.CrossRefGoogle Scholar
  31. 31.
    Monbouquette, H. G. and Ollis, D. F. (1990),Frontiers in Bioprocessing, Sikdar, S. K., Bier, M., and Todd, P., eds., CRC, Baca Raton, FL, p. 65.Google Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • R. M. Worden
    • 1
  • L. G. Berry
    • 1
  1. 1.Department of Chemical EngineeringMichigan State UniversityEast Lansing

Personalised recommendations