Advertisement

Porphyrin-Catalyzed Oxidation of Trichlorophenol

  • Saleem Hasan
  • Kerry L. Sublette
Session 6 Environmental Biotechnology

Abstract

Porphyrin-metal complexes are potentially useful to catalyze redox reactions, which convert toxic and biologically recalcitrant compounds to compounds that are less toxic and more amenable to biotreatment. Porphyrins, in the absence of proteins as in ligninases, peroxidases, and oxidases, are potentially more robust than enzymes and microbial cultures in the treatment of inhibitory substances.

2,4,6-Trichlorophenol was used as a model compound for chlorinated phenols and as a substrate for various porphyrin-metal complexes acting as oxidation catalysts. t-Butyl hydroperoxide was the oxidizing agent. TCP was shown to be at least partially dechlorinated and the aromatic ring broken in reaction products. All porphyrins exhibited saturation kinetics with regard to the initial TCP concentration in reaction mixtures. Electron-withdrawing substituents on the porphyrins were observed to increase stability of the catalysts to inactivating ring-centered oxidation.

Index Entries

Trichlorophenol porphyrin biomimetic heme dechlorination 

References

  1. 1.
    Hackman, E. E. (1978),Toxic Organic Chemical: Destruction and Waste Treatment, NOYES Publications, Park Ridge, NJ.Google Scholar
  2. 2.
    Konemann, H. and Musch, A. (1981),Toxicology 19(3), 223–228.CrossRefGoogle Scholar
  3. 3.
    Holcombe, G. W., Flandt, J. T., and Phipps, G. L. (1980),Water Res. 14(8), 1073–1077.CrossRefGoogle Scholar
  4. 4.
    Devillers, J. and Chambon, P. (1986),Bull. Environ. Contam. Toxicol. 37(4), 599–605.CrossRefGoogle Scholar
  5. 5.
    Chaudhry, G. R. and Chapalamadugu, S. (1991),Microbiol. Rev. 55, 59–79.Google Scholar
  6. 6.
    Amenante, P. M., Kafkewitz, D., Lewandowski, G., and Kung, C.-M. (1992),Environ. Prog. 11(2), 113–122.CrossRefGoogle Scholar
  7. 7.
    Bumpus, J. A. and Aust, S. D. (1987),Appl. Environ. Microbiol. 53, 2001–2008.Google Scholar
  8. 8.
    Mileski, G. J., Bumpus, J. A., Jurek, M. H., and Aust, S. D. (1988),Appl. Environ. Microbiol. 54, 2885–2889.Google Scholar
  9. 9.
    Kirk, T. K. (1987), Biochemistry and genetics of cellular degradation, paper presented at the Federation of Microbiological Societies Symposium, Paris, Sept 7–9.Google Scholar
  10. 10.
    Holmstead, R. L. (1976),J. Agric. Food. Chem. 24, 620–624.CrossRefGoogle Scholar
  11. 11.
    Marks, D. (1976), Removal of chlorinated hydrocarbon pesticides from industrial wastewater, paper delivered at the ACS Meeting, New York, NY, April 7.Google Scholar
  12. 12.
    Cho, J-G., Potter, W. T., and Sublette, K. L. (1994),Appl. Biochem. Biotechnol. 45/46, 861–870.CrossRefGoogle Scholar
  13. 13.
    Habeck, B. D. and Sublette, K. L. (1995),Appl. Biochem. Biotechnol. 51/52, 747–759.Google Scholar
  14. 14.
    Shimada, M., Habe, T., Higuchi, T., Okamoto, T., and Panijpan, B. (1987),Holzforschung 41, 277.Google Scholar
  15. 15.
    Hickman, D. L., Nanthakumar, A., and Goff, H. M. (1988),J. Am. Chem. Soc. 110, 6384–6390.CrossRefGoogle Scholar
  16. 16.
    Nanthakumar, A. and Goff, H. M. (1990),J. Am. Chem. Soc. 112, 4047–4049.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Saleem Hasan
    • 1
  • Kerry L. Sublette
    • 1
  1. 1.Center for Environmental Research & TechnologyUniversity of TulsaTulsa

Personalised recommendations