Skip to main content
Log in

A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A combined chemical and biological process for the recycling of flue gas desulfurization (FGD) gypsum into calcium carbonate and elemental sulfur is demonstrated. In this process, a mixed culture of sulfate-reducing bacteria (SRB) utilizes inexpensive carbon sources, such as sewage digest or synthesis gas, to reduce FGD gypsum to hydrogen sulfide. The sulfide is then oxidized to elemental sulfur via reaction with ferric sulfate, and accumulating calcium ions are precipitated as calcium carbonate using carbon dioxide. Employing anaerobically digested municipal sewage sludge (AD-MSS) medium as a carbon source, SRBs in serum bottles demonstrated an FGD gypsum reduction rate of 8 mg/L/h (109 cells)-1. A chemostat with continuous addition of both AD-MSS media and gypsum exhibited sulfate reduction rates as high as 1.3 kg FGD gypsum/m3d. The increased biocatalyst density afforded by cell immobilization in a columnar reactor allowed a productivity of 152 mg SO4 -2/Lh or 6.6 kg FGD gypsum/m3d. Both reactors demonstrated 100% conversion of sulfate, with 75–100% recovery of elemental sulfur and chemical oxygen demand utilization as high as 70%. Calcium carbonate was recovered from the reactor effluent on precipitation using carbon dioxide. It was demonstrated that SRBs may also use synthesis gas (CO, H2, and CO2 in the reduction of gypsum, further decreasing process costs. The formation of two marketable products—elemental sulfur and calcium carbonate—from FGD gypsum sludge, combined with the use of a low-cost carbon source and further improvements in reactor design, promises to offer an attractive alternative to the landfilling of FGD gypsum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke, L. B. (1993), IEA Coal Research Report # IEACR/62.

  2. Bove, H. J., Brodsky, I. S., Nuyt, G. M., and Angelini, E. J. (1995),Power.June, 33–36.

  3. Harben, P. (1991),Industrial Minerals,July 1, 47–49.

  4. Illinois Clean Coal Institute (1994),Request for Proposals for Research on Utilization and Marketing of Illinois Basin Coal.

  5. Gray, S. M., Puski, S. M., Richard, R., McClellan, T., and Murphy, J. L. (1995),Results of high efficiency S02 removal testing at PSI Energy’s Gibson station in 1995 S02 Control Symposium. Electric Power Research Institute, Miami, FL.

    Google Scholar 

  6. Phillips, J. L., Blythe, G. M., and White, J. R. (1995), in1995 SO2 Control Symposium. Electric Power Research Institute, Miami, FL.

    Google Scholar 

  7. Hedgecoth, M. A. (1995),Power Eng.99, 24–26.

    Google Scholar 

  8. Barton, L. L., ed. (1995),Sulfate-Reducing Bacteria. Biotechnology Handbooks, vol. 8, ed. T. Atkinson, and Sherwood, R. F., Plenum: New York, p. 336.

  9. Widdel, F. and Hansen, T. A. (1992), inThe Procaryotes, Balows, A., et al., eds., Springer-Verlag, New York, p. 1027.

    Google Scholar 

  10. Montgomery, A. D., Mclnerney, M. J., and Sublette, K. L. (1990),Biotechnol. Bioeng.35, 533–539.

    Article  CAS  Google Scholar 

  11. Chen, C. I., Mueller, R. F., and Griebe, T. (1994),Biotechnol. Bioeng. 43, 267.

    Article  CAS  Google Scholar 

  12. Apel, W. A. and Barnes, J. M. (1993), inBiohydrometallurgical Techniques, Torma, A. E. and Wey, J. E., eds. The Minerals, Metals and Materials Society, Warrendale, PA, pp. 641–651.

  13. Uphaus, R. A., Grimm, D., and Cork, D. J. (1983), inDevelopments in Industrial Microbiology, p. 435–442.

  14. Ko, C. W., Vega, J. L., Clausen, E. C., and Gaddy, J. L. (1989),Chem. Engin. Commun.77, 155–169.

    Article  CAS  Google Scholar 

  15. Brysch, K., Schneider, C., Fuchs, G., and Widdel, F. (1987),Arch. Microbiol.148, 264–274.

    Article  CAS  Google Scholar 

  16. Deshmane, V., Lee, C. M., and Sublette, K. L. (1993),Appl. Biochem. Biotechnol.39/40, 739–752.

    Article  Google Scholar 

  17. van Houten, R. T., Pol, L. W. H., and Lettinga, G. (1994),Biotechnol. Bioeng.44, 586–594.

    Article  Google Scholar 

  18. Du Preez, L. A., Odendaal, J. P., Maree, J. P., and Ponsonby, M. (1992),Environ. Technol.13, 875–882.

    Google Scholar 

  19. van Houten, R. T., van der Spoel, H., van Aelst, A. C., Hulshoff Pol L. W., and Lettinga, G. (1996),Biotechnol. Bioeng. 50, 136–144.

    Article  Google Scholar 

  20. Sublette, K. L. and Gwozdz, K. J. (1991),Appl. Biochem. Biotechnol.28, 635–646.

    Article  Google Scholar 

  21. Selvaraj, P. T. and Sublette, K. L. (1996),Appl. Biochem. Biotechnol.57/58, 1003–1012.

    CAS  Google Scholar 

  22. Selvaraj, P. T., Meyer, G. B., and Kaufman, E. N. (1996),Appl. Biochem. Biotechnol. 57/58, 993–1002.

    CAS  Google Scholar 

  23. Kaufman, E. N. and Selvaraj, P. T. (1995),Bio-Chemical sulfur reclaiming and limestone regeneration from flue gas desulfurization gypsum using multiple waste streams. Lockheed Martin Invention Disclosure-ESID No. 1725-X, S-83,353.

  24. Dasu, B. N. and Sublette, K. L. (1989),Appl. Biochem. Biotechnol. 20, 207–220.

    Google Scholar 

  25. Plumb, P., Lee, K., and Sublette, K. L. (1990),Appl. Biochem. Biotechnol. 24, 785–797.

    Google Scholar 

  26. Asai, S., Konishi, Y., and Yabu, T. (1990),AIChE J. 36, 331–1338.

    Article  Google Scholar 

  27. Sonta, H. and Shiratori, T. (1988), US Patent Number 4,931,262.

  28. Satoh, H., Yoshizawa, J., and Kametani, S. (1988),Hydrocarbon Processing 76, 76D-76F.

    Google Scholar 

  29. Imaizumi, T. (1986),Biotechnol. Bioeng. Symp. Ser. 363–371.

  30. Wachi, S. and Jones, A. G. (1991),Chem. Eng. Sci. 46, 3289–3293.

    Article  CAS  Google Scholar 

  31. Chemical Prices (1994), inChemical Market Reporter, Schnell Publishing Company, New York, pp. 28–36.

    Google Scholar 

  32. Selvaraj, P. T. and Sublette, K. L. (1995),Biotech. Prog. 11,153–158.

    Article  CAS  Google Scholar 

  33. Belhateche, D. H. (1995),Chem. Eng. Prog. 91, 32–51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufman, E.N., Little, M.H. & Selvaraj, P. A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources. Appl Biochem Biotechnol 63, 677–693 (1997). https://doi.org/10.1007/BF02920467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920467

Index Entries

Navigation