Performance of coimmobilized yeast and amyloglucosidase in a fluidized bed reactor for fuel ethanol production

  • May Y. Sun
  • Paul R. Bienkowski
  • Brian H. Davison
  • Merry A. Spurrier
  • Oren F. Webb
Session 3 Bioprocessing Research


The performance of coimmobilizedSaccharomyces cerevisiae and amyloglucosidase (AG) was evaluated in a fluidized-bed reactor. Soluble starch and yeast extracts were used as feed stocks. Conversion of soluble starch streams to ethanol has potential practical applications in corn dry and wet milling and in developmental lignocellulosic processes. The biocatalyst performed well, and demonstrated no significant loss of activity or physical integrity during 10 wk of continuous operation. The reactor was easily operated and required no pH control. No operational problems were encountered from bacterial contaminants even though the reactor was operated under nonsterile conditions over the entire course of experiments. Productivities ranged between 25 and 44 g ethanol/L/h/. The experiments demonstrated that ethanol inhibition and bed loading had significant effects on reactor performance.

Index Entries

Ethanol glucose starch simultaneous saccharification and fermentation fluidized-bed reactor 


  1. 1.
    Maiorella, B. L., Blanch, H. W., Willee, C. R. (1985),Biotech. Bio. 26, 1003–1025.CrossRefGoogle Scholar
  2. 2.
    Crueger, W. and Crueger, A. (1982),Biotechnology: A Textbook of Industrial Microbiology, Science Tech, Madison, WI.Google Scholar
  3. 3.
    Inloes, D. S., Michaels, A. S., Robertson, C. R., and Matin, A. (1985),Appl. Microbiol. Biotechnol. 23, 85–91.Google Scholar
  4. 4.
    Silman, R. W. (1984),Biotechnol. Bioeng. 26, 247–51.CrossRefGoogle Scholar
  5. 5.
    Bajpai, P. K. and Margaritis, A. (1985),Enzyme Microb. Technol. 7, 462–464.CrossRefGoogle Scholar
  6. 6.
    Davison, B. H. and Scott, C. D. (1988),Appl. Biochem. Biotechnol. 18, 19.Google Scholar
  7. 7.
    Webb, O. F., Scott, T. C, Davison, B H., and Scott, C. D. (1995),Appl. Biochem. Biotechnol. 51/52, 559.Google Scholar
  8. 8.
    Harshbarger, D., Bautz, M., Davison, B. H., Scott, T. C, and Scott, C. D. (1995),Appl. Biochem. Biotechnol. 51752, 593.Google Scholar
  9. 9.
    Petersen, J. N. and Davison, B. H. (1995),Biotechnol. Bioeng. 46, 139.CrossRefGoogle Scholar
  10. 10.
    Webb, O. F., Davison, B. H., and Scott, T. C. (1996),Appl. Biochem. Biotechnol. 57/58, 639.CrossRefGoogle Scholar
  11. 11.
    McLain, D. H. (1974),Comput. J. 17, 318.Google Scholar
  12. 12.
    Lee, J. H., Pagan, R. J., and Rogers, P. L. (1983),Biotechnol. Bioeng. 25, 659.CrossRefGoogle Scholar
  13. 13.
    Kim, C. H., Lee, G. M., Zanial, A., Han, M. H., and Rhee, S. K. (1988),Enzyme Microb. Technol. 10, 426.CrossRefGoogle Scholar
  14. 24.
    Lee, C. G. Kim, Lee C. H., and Rhee, S. K. (1992),Bioprocess Eng. 7, 335.CrossRefGoogle Scholar
  15. 15.
    Wallace, T. C. (1993), Personal communication.Google Scholar
  16. 16.
    Cysewski, G. R. (1976), Fermentation kinetics and process economics for the production of ethanol, Ph.D. dissertation, University of California, Berkeley.Google Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • May Y. Sun
    • 1
    • 2
  • Paul R. Bienkowski
    • 1
    • 2
  • Brian H. Davison
    • 1
    • 2
  • Merry A. Spurrier
    • 1
  • Oren F. Webb
    • 1
  1. 1.Chemical Technology DivisionOak Ridge National LaboratoryOak Ridge
  2. 2.Department of Chemical EngineeringUniversity of TennesseeKnoxville

Personalised recommendations