Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinantZymomonas

  • Hugh G. Lawford
  • Joyce D. Rousseau
  • James D. McMillan
Session 2 Biological Research


The five-carbon sugard-xylose is a major component of hemicellulose and accounts for roughly one-third of the carbohydrate content of many lignocellulosic materials. The efficient fermentation of xylose-rich hemicellulose hydrolyzates (prehydrolyzates) represents an opportunity to improve significantly the economics of large-scale fuel ethanol production from lignocellulosic feedstocks. The National Renewable Energy Laboratory (NREL) is currently investigating a simultaneous saccharification and cofermentation (SSCF) process for ethanol production from biomass that uses a dilute-acid pretreatment and a metabolically engineered strain ofZymomonas mobilis that can coferment glucose and xylose. The objective of this study was to establish optimal conditions for cost-effective seed production that are compatible with the SSCF process design.

Two-level and three-level full factorial experimental designs were employed to characterize efficiently the growth performance of recombinantZ. mobilis CP4:pZB5 as a function of nutrient level, pH, and acetic acid concentration using a synthetic hardwood hemicellulose hydrolyzate containing 4% (w/v) xylose and 0.8% (w/v) glucose. Fermentations were run batchwise and were pH-controlled at low levels of clarified corn steep liquor (cCSL, 1-2% v/v), which were used as the sole source of nutrients. For the purpose of assessing comparative fermentation performance, seed production was also carried out using a “benchmark” yeast extract-based laboratory medium. Analysis of variance (ANOVA) of experimental results was performed to determine the main effects and possible interactive effects of nutrient (cCSL) level, pH, and acetic acid concentration on the rate of xylose utilization and the extent of cell mass production. Results indicate that the concentration of acetic acid is the most significant limiting factor for the xylose utilization rate and the extent of cell mass production; nutrient level and pH exerted weaker, but statistically significant effects. At pH 6.0, in the absence of acetic acid, the final cell mass concentration was 1.4 g dry cell mass/L (g DCM/L), but decreased to 0.92 and 0.64 g DCM/L in the presence of 0.5 and 1.0% (w/v) acetic acid, respectively. At concentrations of acetic acid of 0.75 (w/v) or lower, fermentation was complete within 1.5 d. In contrast, in the presence of 1.0% (w/v) acetic acid, 25% of the xylose remained after 2 d. At a volumetric supplementation level of 1.5–2.0% (v/v), cCSL proved to be a cost-effective single-source nutritional adjunct that can support growth and fermentation performance at levels comparable to those achieved using the expensive yeast extract-based laboratory reference medium.

Index Entries

RecombinantZymomonas seed production via co-fermentation of glucose and xylose corn steep liquor pH acetic acid synthetic hemicellulose hydrolyzate 


  1. 1.
    Wright, J. D. (1988),Chem. Eng. Prog. 84, 62–74.Google Scholar
  2. 2.
    Wright, J. D., Wyman, C. E., and Grohman, K. (1988),Appl. Biochem. Biotechnol. 18, 75–90.Google Scholar
  3. 3.
    Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735–753.Google Scholar
  4. 4.
    Lynd, L. R. (1989),Adv. Biochem. Eng. Biotechnol. 38, 1–52.Google Scholar
  5. 5.
    Lynd, L. R., Cushman, J. H., Nichols, R. J. and Wyman, C. E. (1991),Science 251, 1318–1323.CrossRefGoogle Scholar
  6. 6.
    Keim, C. R. (1983),Enzyme Microbiol. Technol. 5, 103–114.CrossRefGoogle Scholar
  7. 7.
    Jeffries, T. W. (1981),Biotechnol. Bioeng., Symp. 11, 315–324.Google Scholar
  8. 8.
    Jeffries, T. W. (1983),Adv. Biochem. Eng. Biotechnol. 27, 1–32.Google Scholar
  9. 9.
    Jeffries, T. W. (1990), inYeast: Biotechnology and Biocatalysis, Verachtert, H. and De Mot, R., eds., Marcel Dekker, New York, pp. 349–394.Google Scholar
  10. 10.
    Hahn-Hägerdahl, B., Hallborn, J., Jeppson, H., Olsson, L., Skoog, K., and Walfridson, M. (1993), inBioconversion of Forest and Agricultural Plant Residues Saddler, J. N., ed., C.A.B. International, Wallingford, UK, pp. 231–290.Google Scholar
  11. 11.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem.Biotechnol. 20/21, 391–401.Google Scholar
  12. 12.
    Hinman, N. D., Schell, D. J, Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992),Appl. Biochem. Biotechnol. 34/35, 639–649.Google Scholar
  13. 13.
    Lynd, L. R. (1990),Appl. Biochem. Biotechnol. 24/25, 695–719.Google Scholar
  14. 14.
    Picataggio, S. K., Eddy, C., Deanda, K., Franden, M. A., Finkelstein, M., and Zhang, M. (1996),Seventeenth Symposium on Biotechnology for Fuels & Chemicals (Paper #9).Google Scholar
  15. 15.
    Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), in:Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC,ACS Symposium Series 566, pp. 342–362.Google Scholar
  16. 16.
    Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. K. (1995),Appl. Biochem. Biotechnol. 51/52, 527–536.Google Scholar
  17. 17.
    Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982),Adv. Biochem. Eng. 23, 37–84.Google Scholar
  18. 18.
    Lawford, G. R., Lavers, B. H., Good, D., Charley, R., Fein, J., and Lawford, H. G. (1982), inInternational Symposium on Ethanol from Biomass, Duckworth, H. E. and Thompson, E. A., eds., Royal Society of Canada, Winnipeg, Canada, pp. 482–507.Google Scholar
  19. 19.
    Lawford, H. G. (1988),Proc. VIII Int'l Symp. on Alcohol Fuels, New Energy Development Organization, Tokyo, pp. 21–27.Google Scholar
  20. 20.
    Swings, J. and DeLey, J. (1977),Bacteriol. Rev. 41, 1–46.Google Scholar
  21. 21.
    Montenecourt, B.S. (1985), inBiology of Industrial Microorganisms, Demain, A. L. and Simon, N. A., eds., Benjamin/Cummings, Meno Park, CA, pp. 216–287.Google Scholar
  22. 22.
    Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993),Crit. Rev. Biotechnol. 13, 57–98.CrossRefGoogle Scholar
  23. 23.
    Lawford, H. G. (1988),Appl. Biochem. Biotechnol. 17, 203–219.CrossRefGoogle Scholar
  24. 24.
    Lawford, H. G. and Ruggiero, A. (1990),Biotechnol. Appl. Biochem. 12, 206–211.Google Scholar
  25. 25.
    Bringer, S., Sahm, H., and Swyzen, W. (1984),Biotechnol. Bioeng. Symp. No. 14, 311–319.Google Scholar
  26. 26.
    Rodriguez, E. and Callieri, D. A. S. (1986),Biotechnol. Lett. 8, 745–748.CrossRefGoogle Scholar
  27. 27.
    Doelle, M. B., Greenfield, P. F., and Doelle, H. W. (1990),Proc. Biochem. 25, 151–156.Google Scholar
  28. 28.
    Beavan, M., Zawadzki, B., Droiniuk, R., Fein, J. E., and Lawford, H. G. (1989),Appl. Biochem. Biotechnol. 20/21, 319–326.Google Scholar
  29. 29.
    Lee, G. M., Kim, C. H., Lee, K. J., Zainal Abidin Mohd, Y., Han, M. H., and Rhee, S. K. (1986),J. Ferment Technol. 64, 293–297.CrossRefGoogle Scholar
  30. 30.
    Parekh, S. R., Parekh, R. S., and Wayman, M. (1989),Proc. Biochem. 24, 85–91.Google Scholar
  31. 31.
    Park, S. C., Kademi, A., and Baratti, J. C. (1993),Biotechnol. Lett. 15(11), 1179–1184.CrossRefGoogle Scholar
  32. 32.
    Liu, C.-Q., Goodman, A. E., and Dunn, N. W. (1988),J. Biotechnol. 7, 61.CrossRefGoogle Scholar
  33. 33.
    Feldman, S. D., Sahm, H., and Sprenger, G. A. (1992),Appl. Microbiol. Biotechnol. 38, 354.CrossRefGoogle Scholar
  34. 34.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995),Science 267, 240–243.CrossRefGoogle Scholar
  35. 35.
    Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996),Appl. Biochem. Biotechnol. 57/58, 641–661.Google Scholar
  36. 36.
    Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982),Appl. Environ. Microbiol. 44(2), 496–498.Google Scholar
  37. 37.
    Fein, J. E., Charley, R. C., Hopkins, K. A., Lavers, B., and Lawford, H. G. (1983),Biotechnol Lett. 5, 1–6.Google Scholar
  38. 38.
    Nipkow, A., Beyeler, W., and Feichter, A. (1984),Appl. Microbiol. Biotechnol. 19, 237–240.CrossRefGoogle Scholar
  39. 39.
    Galani, I., Drainas, C., and Typas, M. A. (1985),Biotechnol. Lett. 7, 673–678.CrossRefGoogle Scholar
  40. 40.
    Baratti, J., Varma, R., and Bu'Lock, J. D. (1986),Biotechnol. Lett. 8, 175–180.CrossRefGoogle Scholar
  41. 41.
    Lawford, H. G., Holloway, P., and Ruggiero, A. (1988),Biotechnol. Lett. 10, 809–814.CrossRefGoogle Scholar
  42. 42.
    Lawford, H. G. and Rousseau, J. D. (1996),Appl. Biochem. Biotechnol. 57/58, 307–326.Google Scholar
  43. 43.
    Asghari, A., Bothast, R. J., Doran, J. B., and Ingram, L. O. (1996),J. Ind. Microbiol. 16, 42–47.CrossRefGoogle Scholar
  44. 44.
    Lawford, H. G. and Rousseau, J. D. (1997),Appl. Biochem. Biotechnol. (18th Symp.),63–65, 287.Google Scholar
  45. 45.
    Grohman, K., Himmel, M., Rivard, C., Tucker, M., Baker, T., Torget, R., and Graboski, M. (1984),Biotechnol. Bioeng. Symp. 14, 139–157.Google Scholar
  46. 46.
    Kong, F., Engler, C. R., and Soltes, E. (1992),Appl. Biochem. Biotechnol. 34/35, 23–35.CrossRefGoogle Scholar
  47. 47.
    Timell, T. E. (1964),Adv. Carbohydrate Chem. 19, 247–302.Google Scholar
  48. 48.
    Lawford, H. G. and Rousseau, J. D. (1993), inEnergy from Biomass and Wastes XVI (March 1992), Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.Google Scholar
  49. 49.
    McMillan, J. D. (1994), inEnzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC,ACS Symposium Series 566, pp. 411–437.Google Scholar
  50. 50.
    Lawford, H. G. and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol. 39/40, 301–322.CrossRefGoogle Scholar
  51. 51.
    Lawford, H. G. and Rousseau, J. D. (1994),Appl. Biochem. Biotechnol. 45/46, 437–448.Google Scholar
  52. 52.
    Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), in:Statistics for Experimenters Wiley, New York.Google Scholar
  53. 53.
    Davies, O. L. (1967), inDesign and Analysis of Industrial Experiments, Hafneri, New York.Google Scholar
  54. 54.
    Maddox, I. S. and Richert, S. H. (1977),J. Appl. Bacteriol. 43, 197–204.Google Scholar
  55. 55.
    Myers, R. H. (1971), inResponse Surface Methodology, Allyn and Bacon, Boston.Google Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Hugh G. Lawford
    • 1
  • Joyce D. Rousseau
    • 1
  • James D. McMillan
    • 2
  1. 1.Bio-engineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada
  2. 2.Biotechnology Center for Fuels and ChemicalsNational Renewable Energy LaboratoryGolden

Personalised recommendations