Applied Biochemistry and Biotechnology

, Volume 63, Issue 1, pp 153–158 | Cite as

Expression ofAscaris suum malic enzyme in a mutantEscherichia coli allows production of succinic acid from glucose

  • Lucy Stols
  • Gopal Kulkarni
  • Ben G. Harris
  • Mark I. Donnelly
Session 2 Biological Research


The malic enzyme gene ofAscaris suum was cloned into the vector pTRC99a in two forms encoding alternative arnino-termini. The resulting plasmids, pMEAl and pMEA2, were introduced intoEscherichia coli NZN111, a strain that is unable to grow fermentatively because of inactivation of the genes encoding pyruvate dissimilation. Induction of pMEAl, which encodes the native animoterminus, gave better overexpression of malic enzyme, approx 12-fold compared to uninduced cells. Under the appropriate culture conditions, expression of malic enzyme allowed the fermentative dissimilation of glucose by NZN111. The major fermentation product formed in induced cultures was succinic acid.

Index Entries

Metabolic engineering succinic acid Escherichia coli malic enzyme Ascaris suum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, M. K., Datta, R., and Zeikus, J. G. (1989), inBio-process Engineering: The First Generation Ghose, T. K., ed., Norwood, Chichester, UK, pp. 366–389.Google Scholar
  2. 2.
    Clark, D. P. (1989),FEMS Microb. Rev. 63, 223–234.CrossRefGoogle Scholar
  3. 3.
    Blackwood, A. C., Neish, A. C., and Ledingham, G. A. (1956),J. Bacteriol. 72, 497–499.CrossRefGoogle Scholar
  4. 4.
    Millard, C. S., Chao, Y.-P., Liao, J. C., and Donnelly, M. I. (1996),Appl. Environ. Microbiol. 62, 1808–1810.Google Scholar
  5. 5.
    Thauer, R. K., Jungermann, K., and Decker, K. (1977),Bacteriol. Rev. 41, 100–180.Google Scholar
  6. 6.
    Murai, T., Tokushige, M., Nagai, J., and Katsuki, H. (1971),Biochem. Biophys. Res. Comm. 43, 875–881.CrossRefGoogle Scholar
  7. 7.
    Murai, T., Tokushige, M., Nagai, J., and Katsuki, H. (1972),J. Biochem. 71, 1015–1028.Google Scholar
  8. 8.
    Landsperger, W. J. and Harris, B. G. (1976),J. Biol. Chem. 251, 3599–3602.Google Scholar
  9. 9.
    Takeo, K., Murai, T., Nagai, J., and Katsuki, H. (1967),Biochem. Biophys. Res. Comm. 29, 717.CrossRefGoogle Scholar
  10. 10.
    Sanwal, B. D. (1970),J. Biol. Chem. 245, 1212–1216.Google Scholar
  11. 11.
    Mallick, S., Harris, B. G., and Cook, P. F. (1991),J. Biol. Chem. 266, 2732–2738.Google Scholar
  12. 12.
    Mat-Jan, F., Kiswar, A. Y., and Clark, D. P. (1989),J. Bacteriol. 171, 342–348.Google Scholar
  13. 13.
    Boernke, W. E., Millard, C. S., Stevens, P. W., Kakar, S. N., Stevens, F. J., and Donnelly, M. I. (1995),Arch. Biochem. Biophys. 322, 43–52.CrossRefGoogle Scholar
  14. 14.
    Kulkarni, G., Cook, P. F., and Harris, B. G. (1993),Arch. Biochem. Biophys. 300, 231–237.CrossRefGoogle Scholar
  15. 15.
    Mahajan, S. K., Chu, C. C., Willis, D. K., Templin, A., and Clark, A. J. (1990),Genetics 125, 261–273.Google Scholar
  16. 16.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989),Molecular Cloning: A Laboratory Manual, 2nd ed., 2nd ed., Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  17. 17.
    Balch, W. and Wolfe, R. S. (1976),Appl. Environ. Microbiol. 32, 781–791.Google Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Lucy Stols
    • 1
  • Gopal Kulkarni
    • 2
  • Ben G. Harris
    • 2
  • Mark I. Donnelly
    • 1
  1. 1.Environmental Research DivisionArgonne National LaboratoryArgonne
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of North TexasFort Worth

Personalised recommendations