Advertisement

Applied Scientific Research, Section B

, Volume 6, Issue 1, pp 225–239 | Cite as

The Fermi-Dirac integrals\(\mathcal{F}_p (\eta ) = (p!)^{ - 1} \int\limits_0^\infty {\varepsilon ^p (e^{\varepsilon - \eta } + 1} )^{ - 1} d\varepsilon \)

  • R. B. Dingle
Article

Summary

Following a discussion of the relationship of the Fermi-Dirac integrals to other functions, complete expansions are developed which enable the integrals of all orders to be calculated without recourse to numerical integration. In order to supplement existing tables, values are given for orders—1 and 0 for positive and negative arguments, and for orders 1, 2, 3, 4 for positive arguments.

Keywords

Asymptotic Series Integer Order Differentiation Formula Positive Argument Negative Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Beer, A. C., M. N. Chase and P. F. Choquard, Helv. Phys. Acta28 (1955) 529.MATHMathSciNetGoogle Scholar
  2. 2).
    Clunie, J., Proc. Phys. Soc.A 67 (1954) 632.ADSMathSciNetGoogle Scholar
  3. 3).
    Davis, H. T., Tables of the Higher Mathematical Functions, Vol. 2, Principia Press, Bloomington, Indiana, 1935, p. 247.MATHGoogle Scholar
  4. 4).
    Dawson, H. G., Proc. Lond. Math. Soc.29 (1897) 519. St äblein, F. and R. Schläfer, Z. angew. Math. Mech.23 (1943) 59. Terrill, H. M. and L. Sweeny, J. Franklin Inst.237(1944) 499,238 (1944) 220. Rosser, J. B., Theory and Application of\(\int\limits_0^z {e^{ - x^2 } dx and } \int\limits_0^z {e^{ - p2y2} } dy\int\limits_0^y {e^{ - x2} } dx,\) Mapleton House, Brooklyn, N.Y., 1948.CrossRefGoogle Scholar
  5. 5).
    Dingle, R. B., Appl. Sci. Res.B4 (1955) 401.CrossRefMathSciNetGoogle Scholar
  6. 6).
    Dingle, R. B., D. Arndt, and S. K. Roy, Appl. Sci. Res.B 6 (1957) 144.CrossRefGoogle Scholar
  7. 7).
    Gilham, C. W., Proc. Leeds Phil. Soc.3 (1936) 117.Google Scholar
  8. 8).
    Hurwitz, A., Z. Math. Phys.27 (1882) 86; E. Lerch, Acta Math.11 (1887) 19; Jonquière, Bull. Soc. Math. de France17 (1889) 142.Google Scholar
  9. 9).
    Jahnke, E. and F. Emde, Tables of Functions, Dover, New York, 1945.MATHGoogle Scholar
  10. 10).
    McDougall, J. and E. C. Stoner, Phil. Trans. Roy. Soc.A 237 (1938) 67.CrossRefADSGoogle Scholar
  11. 11).
    Nordheim, L., Müller Pouillets Lehrbuch der Physik,4, iv, 277, Braunschweig, 1934.Google Scholar
  12. 12).
    Placzek, G., The FunctionsE n(x),MT— 1, National Research Council of Canada, Division of Atomic Energy, 1946. (Reprinted in Applied Math. Series no.37, pp. 57-111, U.S. Gov. Printing Office, 1954).Google Scholar
  13. 13).
    Rhodes, P., Proc. Roy. Soc.A 204 (1950) 396.ADSMathSciNetGoogle Scholar
  14. 14).
    Sommerfeld, A., Z. Phys.47 (1928) 1.CrossRefADSGoogle Scholar
  15. 15).
    Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937; G. Doetsch, Theorie und Anwendung der Laplace Transformation, Berlin, 1937; R. B. Dingle, Appl. Sci. Res.B 4 (1955) 401.MATHGoogle Scholar
  16. 16).
    Whittaker, E. T., and G. N. Watson, A Course of Modern Analysis, 4th edition, Cambridge University Press, 1927.Google Scholar
  17. 17).
    Wilson, A. H., The Theory of Metals, 2nd edition, Cambridge University Press, 1953.Google Scholar

Copyright information

© Martinus Nijhoff 1957

Authors and Affiliations

  • R. B. Dingle
    • 1
  1. 1.Department of PhysicsUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations