Skip to main content
Log in

Biological production of liquid and gaseous fuels from synthesis gas

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Liquid and gaseous fuels may be produced biologically from coal by the indirect conversion of coal synthesis gas. Methane has been produced from synthesis gas using acetate and CO2/H2 as intermediates, utilizing a number of CO-utilizing and methanogenic bacteria. Also, a bacterium that is capable of producing ethanol from synthesis gas through indirect liquefaction has been isolated fron natural inocula. This paper summarizes research to optimize the performance of some of these cultures. These conversions, involving H2 and CO, which are only slightly soluble in the liquid media, may be mass transfer limited, and methods to enhance mass transport are examined. Experimental results and models for several reactor designs, including CSTR and packed columns, are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Interfacial area/unit volume of liquid cm-1

G :

Gas flow rate mL/h

h :

Column height cm

H :

Henry’s law constant atm-L/mmol

K l :

Overall gas-liquid mass transfer coefficient cm/h

n :

Molar flow in the gas phase mmol/h

P :

Partial pressure atm

Q :

Substrate uptake rate mmol/L h

R :

Gas constant atm-L/mol K

S :

Column internal cross-sectional area cm2

T :

Reaction temperature K

V :

Volume L

Y :

Gas phase concentration ratio to an inert gas εl Liquid porosity

CO:

carbon monoxide

i:

inlet

I:

inert

L:

liquid

T:

total

References

  1. Tsao, G. T. and Lee, Y. H. (1977),Ann. Reports Term. Proc. 1, 115.

    CAS  Google Scholar 

  2. Blanch, H. W. (1979),Ann. Reports Ferm. Proc. 3, 47.

    CAS  Google Scholar 

  3. Yoshida, F. (1982),Ann. Reports Perm. Proc. 5, 1.

    CAS  Google Scholar 

  4. Ljungdahl, L. G. and Wiegel, J. (1986),Manual of Industrial Microbiology and Biotechnology, Demain, A. L. and Solomon, N. A., eds., American Society for Microbiology, Washington, DC, pp. 84–96.

    Google Scholar 

  5. Escalamente-Semerena, J. C., Rinehart, K. L., Jr., and Wolfe, R. S. (1984),Proceedings of the 4th International Symposium, Crawford, R. L. and Hanson, R. S., eds., American Society for Microbiology, Washington, DC.

    Google Scholar 

  6. Jones, W. J., Nagle, D. P., Jr., and Whitman, W. B. (1978),Microbiol. Rev. 51, 135.

    Google Scholar 

  7. Huser, B., Wuhrmann, K., and Zehnder, A. J. B. (1982),Arch. Microbiol. 132, 1.

    Article  CAS  Google Scholar 

  8. Daniels, L., Fuchs, G., Thauer, R. K., and Zeikus, J. G. (1977),J. Bacteriol. 132, 118.

    CAS  Google Scholar 

  9. Vega, J. L., Prieto, S., Elmore, B. B., Clausen, E. C., and Gaddy, J. L. (1989),Appl. Biochem. Biotech., in press.

  10. Genther, B. R. S. and Bryant, M. P. (1983),Appl. Environ. Microbiol. 43, 70.

    Google Scholar 

  11. Uffen, R. L. (1976),Proc. Natl. Acad. Sci. USA 73, 3298.

    Article  CAS  Google Scholar 

  12. Dashkevicz, M. P. and Uffen, R. L. (1979),Int. J. Sys. Bacteriol. 29, 145.

    Article  Google Scholar 

  13. Breed, R. S., Murray, E. G. D., and Smith, N. R. (1977),Bergey’s Manual of Determinative Bacteriology, 8th ed., Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  14. Kluyver, A. J. and Schnellen, C. G. (1947),Arch. Biochem. 14, 57.

    CAS  Google Scholar 

  15. Tracy, C. A. and Ashare, E. (1983),Fuel Gas Developments, Wise, D. L., ed., CRC Press, Boca Raton, Florida, pp. 107–132.

    Google Scholar 

  16. Vega, J. L., Holmberg, V. L., Ko, C. W., Clausen, E. C., and Gaddy, J. L. (1988), “Advanced Studies of the Biological Conversion of Coal Synthesis Gas to Methane. Topical Report 1: Reactor Optimization,” USDOE, Morgantown Energy Technology Center, Contract No. DE-AC21-86MC23281.

  17. Wiegel, J. (1980),Experientia 36, 1.

    Article  Google Scholar 

  18. Barik, S., Prieto, S., Harrison, S. B., Clausen, E. C., and Gaddy, J. L. (1988),Appl. Biochem. Biotech. 18, 363.

    Article  CAS  Google Scholar 

  19. Clausen, E. C. and Gaddy, J. L. (1989), “Advanced Studies of Biological Indirect Liquefaction of Coal. Topical Report 1. Culture Identification,” USDOE, Pittsburgh Energy Technology Center, Contract No. DE-AC22-88PC79813.

  20. Rogers, P. (1986),Adv. Appl. Microbiol. 31, 1.

    Article  CAS  Google Scholar 

  21. Rao, G. and Mutharasan, R. (1988),Biotech. Lett. 10, 313.

    Article  CAS  Google Scholar 

  22. Rao, G., Ward, P. J., and Mutharasan, R. (1987),Ann. Acad. Sci. 506, 77.

    Article  Google Scholar 

  23. Kim, T. S. and Kim, B. H. (1988),Biotech. Lett. 10, 123.

    Article  CAS  Google Scholar 

  24. Vega, J. L., Antorrena, G. M., Clausen, E. C. and Gaddy, J. L. (1989),Biotech. Bioengr. 34, 785.

    Article  CAS  Google Scholar 

  25. Charpentier, J. C. (1981),Adv. Chem. Engr. 11, 1.

    Article  CAS  Google Scholar 

  26. Antorrena, G. M. (1987), University of Arkansas, Department of Chemical Engineering.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klasson, K.T., Elmore, B.B., Vega, J.L. et al. Biological production of liquid and gaseous fuels from synthesis gas. Appl Biochem Biotechnol 24, 857–873 (1990). https://doi.org/10.1007/BF02920300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920300

Index Entries

Navigation