Advertisement

Applied Biochemistry and Biotechnology

, Volume 24, Issue 1, pp 857–873 | Cite as

Biological production of liquid and gaseous fuels from synthesis gas

  • K. T. Klasson
  • B. B. Elmore
  • J. L. Vega
  • M. D. Ackerson
  • E. C. Clausen
  • J. L. Gaddy
Session 5 Biological Processing of Fossil Fuels

Abstract

Liquid and gaseous fuels may be produced biologically from coal by the indirect conversion of coal synthesis gas. Methane has been produced from synthesis gas using acetate and CO2/H2 as intermediates, utilizing a number of CO-utilizing and methanogenic bacteria. Also, a bacterium that is capable of producing ethanol from synthesis gas through indirect liquefaction has been isolated fron natural inocula. This paper summarizes research to optimize the performance of some of these cultures. These conversions, involving H2 and CO, which are only slightly soluble in the liquid media, may be mass transfer limited, and methods to enhance mass transport are examined. Experimental results and models for several reactor designs, including CSTR and packed columns, are presented and discussed.

Index Entries

Synthesis gas ethanol methane mass transfer limited bioreactors 

Nomenclature

a

Interfacial area/unit volume of liquid cm-1

G

Gas flow rate mL/h

h

Column height cm

H

Henry’s law constant atm-L/mmol

Kl

Overall gas-liquid mass transfer coefficient cm/h

n

Molar flow in the gas phase mmol/h

P

Partial pressure atm

Q

Substrate uptake rate mmol/L h

R

Gas constant atm-L/mol K

S

Column internal cross-sectional area cm2

T

Reaction temperature K

V

Volume L

Y

Gas phase concentration ratio to an inert gas εl Liquid porosity

Subindices or superindices:

CO

carbon monoxide

i

inlet

I

inert

L

liquid

T

total

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsao, G. T. and Lee, Y. H. (1977),Ann. Reports Term. Proc. 1, 115.Google Scholar
  2. 2.
    Blanch, H. W. (1979),Ann. Reports Ferm. Proc. 3, 47.Google Scholar
  3. 3.
    Yoshida, F. (1982),Ann. Reports Perm. Proc. 5, 1.Google Scholar
  4. 4.
    Ljungdahl, L. G. and Wiegel, J. (1986),Manual of Industrial Microbiology and Biotechnology, Demain, A. L. and Solomon, N. A., eds., American Society for Microbiology, Washington, DC, pp. 84–96.Google Scholar
  5. 5.
    Escalamente-Semerena, J. C., Rinehart, K. L., Jr., and Wolfe, R. S. (1984),Proceedings of the 4th International Symposium, Crawford, R. L. and Hanson, R. S., eds., American Society for Microbiology, Washington, DC.Google Scholar
  6. 6.
    Jones, W. J., Nagle, D. P., Jr., and Whitman, W. B. (1978),Microbiol. Rev. 51, 135.Google Scholar
  7. 7.
    Huser, B., Wuhrmann, K., and Zehnder, A. J. B. (1982),Arch. Microbiol. 132, 1.CrossRefGoogle Scholar
  8. 8.
    Daniels, L., Fuchs, G., Thauer, R. K., and Zeikus, J. G. (1977),J. Bacteriol. 132, 118.Google Scholar
  9. 9.
    Vega, J. L., Prieto, S., Elmore, B. B., Clausen, E. C., and Gaddy, J. L. (1989),Appl. Biochem. Biotech., in press.Google Scholar
  10. 10.
    Genther, B. R. S. and Bryant, M. P. (1983),Appl. Environ. Microbiol. 43, 70.Google Scholar
  11. 11.
    Uffen, R. L. (1976),Proc. Natl. Acad. Sci. USA 73, 3298.CrossRefGoogle Scholar
  12. 12.
    Dashkevicz, M. P. and Uffen, R. L. (1979),Int. J. Sys. Bacteriol. 29, 145.CrossRefGoogle Scholar
  13. 13.
    Breed, R. S., Murray, E. G. D., and Smith, N. R. (1977),Bergey’s Manual of Determinative Bacteriology, 8th ed., Williams and Wilkins, Baltimore, Maryland.Google Scholar
  14. 14.
    Kluyver, A. J. and Schnellen, C. G. (1947),Arch. Biochem. 14, 57.Google Scholar
  15. 15.
    Tracy, C. A. and Ashare, E. (1983),Fuel Gas Developments, Wise, D. L., ed., CRC Press, Boca Raton, Florida, pp. 107–132.Google Scholar
  16. 16.
    Vega, J. L., Holmberg, V. L., Ko, C. W., Clausen, E. C., and Gaddy, J. L. (1988), “Advanced Studies of the Biological Conversion of Coal Synthesis Gas to Methane. Topical Report 1: Reactor Optimization,” USDOE, Morgantown Energy Technology Center, Contract No. DE-AC21-86MC23281.Google Scholar
  17. 17.
    Wiegel, J. (1980),Experientia 36, 1.CrossRefGoogle Scholar
  18. 18.
    Barik, S., Prieto, S., Harrison, S. B., Clausen, E. C., and Gaddy, J. L. (1988),Appl. Biochem. Biotech. 18, 363.CrossRefGoogle Scholar
  19. 19.
    Clausen, E. C. and Gaddy, J. L. (1989), “Advanced Studies of Biological Indirect Liquefaction of Coal. Topical Report 1. Culture Identification,” USDOE, Pittsburgh Energy Technology Center, Contract No. DE-AC22-88PC79813.Google Scholar
  20. 20.
    Rogers, P. (1986),Adv. Appl. Microbiol. 31, 1.CrossRefGoogle Scholar
  21. 21.
    Rao, G. and Mutharasan, R. (1988),Biotech. Lett. 10, 313.CrossRefGoogle Scholar
  22. 22.
    Rao, G., Ward, P. J., and Mutharasan, R. (1987),Ann. Acad. Sci. 506, 77.CrossRefGoogle Scholar
  23. 23.
    Kim, T. S. and Kim, B. H. (1988),Biotech. Lett. 10, 123.CrossRefGoogle Scholar
  24. 24.
    Vega, J. L., Antorrena, G. M., Clausen, E. C. and Gaddy, J. L. (1989),Biotech. Bioengr. 34, 785.CrossRefGoogle Scholar
  25. 25.
    Charpentier, J. C. (1981),Adv. Chem. Engr. 11, 1.CrossRefGoogle Scholar
  26. 26.
    Antorrena, G. M. (1987), University of Arkansas, Department of Chemical Engineering.Google Scholar

Copyright information

© Humana Press Inc. 1990

Authors and Affiliations

  • K. T. Klasson
    • 1
  • B. B. Elmore
    • 1
  • J. L. Vega
    • 1
  • M. D. Ackerson
    • 1
  • E. C. Clausen
    • 1
  • J. L. Gaddy
    • 1
  1. 1.Department of Chemical EngineeringUniversity of ArkansasFayetteville

Personalised recommendations