Bacillus stearothermophilus for thermophilic production of l-lactic acid

  • H. Danner
  • M. Neureiter
  • L. Madzingaidzo
  • M. Gartner
  • R. Braun
Session 5: Specialty Chemicals with Emphasis on Environmentally Benign Products and Processes


A process for the continuous production of high purityL-lactic acid in a membrane bioreactor at 65°C has been developed. Two differentBacillus stearothermophilus strains have been tested in batch experiments. Lactic acid yields are between 60 and more than 95% of theoretical yields. The amounts of ethanol, acetate, and formate formed varied between 0 and 0.4, 0 and 0.1, and 0 and 0.5, respectively (mol/mol glucose). All byproducts are valuable and may be separated easily by rectification of the fermentation broth. Complete cell retention enables high volumetric productivity (5 g/Lh), and a minimum of growth supplements. The high temperature of 65°C allows the autoselective fermentation without problems with contamination.

Index Entries

Bacillus stearothermophilus L-lactic acid thermophilic continuous fermentation 


  1. 1.
    Litchfield, J. H. (1996),Adv. Appl. Microbiol. 42, 45–96.CrossRefGoogle Scholar
  2. 2.
    Lipinsky, E. S. and Sinclair, R. G. (1986).Chem. Eng. Prog. 82, 26.Google Scholar
  3. 3.
    Lerner, M., (1996),Chem Marketing Reporter May 13, 7–18.Google Scholar
  4. 4.
    McCoy, M. (1996),Chem Marketing Reporter. September 16, 1992.Google Scholar
  5. 5.
    Kharas, G. B., Sanchez-Riera, F., and Severson, D. K. (1994), inPlastic from microbes, Mobley D. P., ed., Hanser/Gardner, pp. 93–132.Google Scholar
  6. 6.
    Tyagi, R. D., Kluepfel, D., and Couillard, D. (1991), inBioconversion of Waste Materials to Industrial Products, Martin, A.M. (ed.), Elsevier, Essex, UK.Google Scholar
  7. 7.
    Sneath, P. H. A., Mair, N. S., Sharpe, M. E., and Holt, J. G. (1986),Bergey’s Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore.Google Scholar
  8. 7.
    Ferras, E., Minier, M., and Goma, G. (1986),Biotechnol. Bioeng. 28, 523–533.CrossRefGoogle Scholar
  9. 9.
    Taniguchi, M., Kotani, N., and Kobayashi, T. (1987),Appl. Microbiol. Biotechnol. 25, 438–441.CrossRefGoogle Scholar
  10. 10.
    Blanc, P. and Goma, G. (1987),Bioprocess Eng. 2, 137–139.CrossRefGoogle Scholar
  11. 11.
    Borgardts, P., Krischke, W., Chmiel, H., and Trosch, W. (1994), Proceedings ECB 6, inProgress in Biotechnology 9, 905–908. Elsevier.Google Scholar
  12. 12.
    Mehaia, M., and Cheryan, M. (1985),Enzyme Microb. Technol. 8, 289–292.CrossRefGoogle Scholar
  13. 13.
    Jones, D., Pell, R., Sneath, R. H. A. (1991), inMaintenance of Microorganisms and Cultured Cells. A manual of Laboratory Methods. 2nd ed. Kirsop B. E. and Doyle A. Academic New York, 45–50.Google Scholar
  14. 14.
    Gawehn, K. (1984), inMethods of Enzymatic Analysis 3rd ed., vol., Bergmeyer, H. U., (ed.), Verlag Chemie, Weinheim, Deerfield Beach Florida, Basel, pp. 588–592.Google Scholar
  15. 15.
    Hartley, B. S., Baghaei-Yazdi, N., Javed, M., Jackson, R. A., San Martin, R., and Leak, D. J. (1993), Straw 93’ Conference, Royal Agricultural College, Cirencester, Gloucestershire, UK.Google Scholar
  16. 16.
    Boyaval, P., Corre, C, and Terre, S. (1987),Biotechnol. Lett 9/3, 207–212.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • H. Danner
    • 1
  • M. Neureiter
    • 1
  • L. Madzingaidzo
    • 1
  • M. Gartner
    • 1
  • R. Braun
    • 1
  1. 1.Department for Environmental BiotechnologyInstitute for Agrobiotechnology Tulln (IFA-Tulln)TullnAustria

Personalised recommendations