Improvement of oxygen transfer coefficient duringPenicillium canescens culture

Influence of turbine design, agitation speed, and air flow rate on xylanase production
  • A. Gaspar
  • L. Strodiot
  • Ph. Thonart
Session 3: Bioprocessing Research


To improve xylanase productivity fromPenicillium canescens 10–10c culture, an optimization of oxygen supply is required. Because the strain is sensitive to shear forces, leading to lower xylanase productivity as to morphological alteration, vigorous mixing is not desired. The influence of turbine design, agitation speed, and air flow rate on K1a (global mass transfer coefficient, h-1) and enzyme production is discussed. K1a values increased with agitation speed and air flow rate, whatever the impeller, in our assay conditions. Agitation had more influence on K1a values than air flow, when a disk-mounted blade’s impeller (DT) is used; an opposite result was obtained with a hub-mounted pitched blade’s impeller (PBT). Xylanase production appeared as a function of specific power (W/m3), and an optimum was found in 20 and 100 L STRs fitted with DT impellers. On the other hand, the use of a hub-mounted pitched blade impeller (PBT8), instead of a disk-mounted blade impeller (DT4), reduced the lag time of hemicellulase production and increased xylanase productivity 1.3-fold.

Index Entries

Xylanase Penicillium canescens K1specific power 


  1. 1.
    Mooyman, J. G. (1987),Biotechnol. Bioeng. 24, 180–186.CrossRefGoogle Scholar
  2. 2.
    Dronowat, S. N., Svihla, C. K., and Hanley, T. R. (1995),Appl. Biochem. Biotechnol. 51/52, 347–354.Google Scholar
  3. 3.
    Malfait, J. L., Wilkox, D. G., Mercer, D. G., and Barker, L. D. (1981),Biotechnol. Bioeng. 23, 863–877.CrossRefGoogle Scholar
  4. 4.
    Jacques, P., Hbib, C, Vanhentenryck, F., Destain, J., Bare, G., Razafindralambo, H., Paquot, M., and Thonart, P. (1993),Prog. Biotechnol. 9, 1067–1069.Google Scholar
  5. 5.
    Edwards, N., Beeton, S., Bull, A. T., and Merchuk, J. C. (1989),Appl. Microbiol. Biotechnol. 30, 190–195.CrossRefGoogle Scholar
  6. 6.
    van Suijdam, J. C. and Metz, B. (1981),Biotechnol. Bioeng. 23, 111–148.CrossRefGoogle Scholar
  7. 7.
    Smith, J. J. and Lilly, M. D. (1990),Biotechnol. Bioeng. 35, 1011–1023.CrossRefGoogle Scholar
  8. 8.
    Gusk, T. W., Jonhson, R. D., Tyn, M. T., and Kinsella, J. E. (1990),Biotechnol. Bioeng. 37, 371–374.CrossRefGoogle Scholar
  9. 9.
    Leong-Poi, L. and Allen, D. G. (1992),Biotechnol. Bioeng. 40, 403–412.CrossRefGoogle Scholar
  10. 10.
    Hoo, M. M., Solomon, B. O., Hempei, C, Rinas, U., and Deckwer, W. P. (1995),J. Chem. Tech. Biotechnol. 63, 229–236.CrossRefGoogle Scholar
  11. 11.
    Metz, B. and Kossen, N. W. F. (1977),Biotechnol. Bioeng. 19, 781–799.CrossRefGoogle Scholar
  12. 12.
    Hoo, M. M., Hempel, C., and Deckwer, W.-D. (1994),J. Biotechnol. 37, 49–58.CrossRefGoogle Scholar
  13. 13.
    Wase, D. A., McManamey, W. J., Raymahasay, S., and Vaid, A. K. (1985),Biotechnol. Bioeng. 27, 1166–1172.CrossRefGoogle Scholar
  14. 14.
    Palma, M. B., Milagres, A. M. F., Prata, A. M. R., and de Mancilha, I. M. (1996),Process Biochem. 31, 141–145.CrossRefGoogle Scholar
  15. 15.
    Gomes, J., Purkarthofer, H., Hayn, M., Kappelmuller, J., Sinner, M., and Steiner, W. (1993),Appl. Microbiol. Biotechnol. 39, 700–707.CrossRefGoogle Scholar
  16. 16.
    Bailey, M. J., Biely, P., and Poutanen, K. (1992),J. Biotechnol. 23, 257–270.CrossRefGoogle Scholar
  17. 17.
    Calderbank, P. H. (1967), inMixing-Theory and Practice, vol. 2, Academic, New York.Google Scholar
  18. 18.
    Vanderschuren, A. (1993), Thesis in Chemical Engineering, Faculte Polytechnique de Mons.Google Scholar
  19. 19.
    Bruxelmane, M. (1976), Proceedings of an International Symposium on Chemical Engineering, Louvain-La-Neuve, Belgium, pp. 321–417.Google Scholar
  20. 20.
    Bruxelmane, M. (1978), Proceedings of an International Symposium on Mixing, Facute Polytechnique de Mons, Belgium.Google Scholar
  21. 21.
    Bruxelmane, M. (1976), Proceedings of an International Symposium on Chemical Engineering, Louvain-La-Neuve, Belgium, pp. 91–177.Google Scholar
  22. 22.
    Gaspar, A., Cosson, T., Roques, C, and Thonart, Ph. (1997),Appl. Biochem. Biotechnol. 67, 57–70.CrossRefGoogle Scholar
  23. 23.
    Joshi, J. B., Pandit, A. B., and Sharma, M. M. (1982),Chem. Eng. Sci. 37, 813–844.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  1. 1.Centre Wallon de Biologie IndustrielleFaculté universitaire des sciences agronomiques de GemblouxBelgium

Personalised recommendations