Advertisement

Improvement of substrate conversion to molecular hydrogen by three-stage cultivation of a photosynthetic bacterium,Rhodovulum sulfidophilum

  • Isamu Maeda
  • Wasimul Q. Chowdhury
  • Kenji Idehara
  • Kiyohito Yagi
  • Tadashi Mizoguchi
  • Toru Akano
  • Hltoshi Mlyasaka
  • Toshio Furutani
  • Yoshiaki Ikuta
  • Norio Shioji
  • Yoshiharu Miura
Session 2: Applied Biological Research

Abstract

In photosynthetic bacteria, after transition to light-anaerobic and nitrogen-deficient conditions, hydrogen evolution starts with expression of nitrogenase activity. Until the expression of enough activity,Rhodovulum sulfidophilum consumed substrates and converted them to poly(3-hydrox-ybutyrate) (PHB), resulting in a decrease in the proportion of substrate converted into hydrogen gas. To prevent conversion to PHB during the period when nitrogenase activity is derepressed, the authors employed a cultivation method consisting of three stages: cell growth, nitrogenase derepression, and hydrogen production. Cells cultivated by this method exhibited no lag time before the commencement of hydrogen evolution and gave an improved yield of hydrogen from the algal fermentative products.

Index Entries

Hydrogen production poly(3-hydroxybutyrate) (PHB) accumulation nitrogenase derepression ethanol algal fermentative products 

References

  1. 1.
    Vignais, P. M., Colbeau, A., Willison, J. C, and Jouanneau, Y. (1985),Adv. Microb. Physiol. 26, 155–234.Google Scholar
  2. 3.
    Miura, Y., Saitoh, C, Matsuoka, S., and Miyamoto, K. (1992),Biosci. Biotech. Biochem. 56, 751–754.Google Scholar
  3. 4.
    Miura, Y., Ohta, S., Mano, M., and Miyamoto, K. (1986).Agric. Biol. Chem. 50, 2837–2844.Google Scholar
  4. 5.
    Maeda, I., Miyashiro, M., Hikawa, H., Yagi, K., Miura, Y., and Mizoguchi, T. (1996),Biosci. Biotech. Biochem. 60, 975–978.Google Scholar
  5. 6.
    Yagi, K., Maeda, I., Idehara, K., Miura, Y., Akano, T., Fukatu, K., Ikuta, Y., and Nakamura, H. K. (1994),Appl. Biochem. Biotechnol. 45/46, 429–436.CrossRefGoogle Scholar
  6. 7.
    Miura, Y. (1995),Process Biochem. 30, 1–7.CrossRefGoogle Scholar
  7. 8.
    Chowdhury, W. Q., Idehara, K., Maeda, I, Umeda, R, Yagi, K., Miura, Y., and Mizoguchi, T. (1996),Appl. Biochem. Biotechnol. 57/58, 361–366.Google Scholar
  8. 9.
    Ohta, S., Miyamoto, K., and Miura, Y. (1987),Plant Physiol. 83, 1022–1026.Google Scholar
  9. 10.
    Kim, J. S., Ito, K., and Takahashi, H. (1982),Agric. Biol. Chem. 46, 937–941.Google Scholar
  10. 11.
    Stevens, P., Plovie, N., de Vos, P., and de Ley, J. (1986),Syst. Appl. Microbiol. 8, 19–23.Google Scholar
  11. 12.
    Nakada, E., Asada, Y., Arai, T., and Miyake, J. (1995),j. Ferment. Bioeng. 80, 53–57.CrossRefGoogle Scholar
  12. 13.
    Zürer, H. and Bachofen, R. (1979),Appl. Environ. Microbiol. 37, 789–793.Google Scholar
  13. 14.
    Planchard, A., Mignot, L., Jouenne, T., and Junter, G. A. (1989),Appl. Microbiol. Biotechnol. 31, 49–54.CrossRefGoogle Scholar
  14. 15.
    Fiβler, J., Kohring, G. W., and Giffhorn, F. (1995),Appl. Microbiol. Biotechnol. 44, 43–46.CrossRefGoogle Scholar
  15. 16.
    de Philippis, R., Ena, A., Guastini, M., Sili, C, and Vincenzini, M. (1992),FEMS Microbiol. Rev 103, 187–194.Google Scholar
  16. 17.
    Hustede, E., Steinbühel, A., and Schlegel, H. G. (1993),Appl. Microbiol. Biotechnol. 39, 87–93.Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Isamu Maeda
    • 1
  • Wasimul Q. Chowdhury
    • 1
  • Kenji Idehara
    • 1
  • Kiyohito Yagi
    • 1
  • Tadashi Mizoguchi
    • 1
  • Toru Akano
    • 2
  • Hltoshi Mlyasaka
    • 2
  • Toshio Furutani
    • 2
  • Yoshiaki Ikuta
    • 3
  • Norio Shioji
    • 3
  • Yoshiharu Miura
    • 2
  1. 1.Faculty of Pharmaceutical SciencesOsaka UniversityOsaka
  2. 2.Kansai Electric Power CompanyHyogo
  3. 3.Mitsubishi Heavy IndustriesHyogoJapan

Personalised recommendations