Advertisement

Microgravity Science and Technology

, Volume 19, Issue 5–6, pp 196–200 | Cite as

The “gene” experiment in the spanish soyuz mission to the ISS. effects of the cold transportation step

  • R. Herranz
  • D. A. Laván
  • A. Benguría
  • P. Duque
  • L. J. Leandro
  • G. Gasset
  • F. J. Medina
  • J. van Loon
  • R. Marco
Article

Abstract

If exploration of outer space is going to be a major human enterprise in the future, it is important to establish the nature of the biological response to the space environment. In one of the recent Soyuz missions to serve the ISS, the Spanish Soyuz Mission in October 2003, we sent a group of Drosophila pupae that underwent almost complete development there. Microarray analyses of the RNAs extracted from flies fixed in the ISS revealed that a relatively large set of genes (15% of the total number assayed) suffered a significant expression change in these conditions. Furthermore, the samples had to be transported to the launch site and it was necessary to slow down their development by exposing them to a lower temperature, fully compatible with pupal development. Such a pre- exposure had an effect by itself on the pattern of gene expression observed after pupal development at normal temperature, but the two environmental factors seemed to act synergistically together with the containment in the type I container. These findings indicate the importance of maintaining a vigorous scientific program in the ISS to understand the consequences of the modified environment in outer space on living organisms.

Keywords

International Space Station Pupal Development Launch Site Random Position Machine Soyuz Mission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marco R, Husson D, Herranz R, Mateos J, Medina FJ.Drosophila melanogaster and the future of ‘evo-devo’ biology in space. Challenges and problems in the path of an eventual colonization project outside the earth. Adv Space Biol Med. 9:41–81 (2003).CrossRefGoogle Scholar
  2. 2.
    Marco R, Benguria A, Sanchez J, de Juan E. Effects of the space environment onDrosophila melanogaster development. Implications of the IML-2 experiment. J Biotechnol. 27;47(2–)3: 179–89 (1996).CrossRefGoogle Scholar
  3. 3.
    Adams et al. The genome sequence of Drosophilamelanogaster. Science. 287(5461):2185–95(2000.CrossRefGoogle Scholar
  4. 4.
    Herranz R, Husson D, Villa A, Pastor M, Medina FJ, Marco R “Modifications in basic handling techniques to study the consequences of theDrosophila melanogaster exposure to the Space environment” J. gravit. Physiol. 12(2) 51–60 (2005).Google Scholar
  5. 5.
    Tixador R, Raffin J, Richoilley G, Kordium VA, Kojarinov V Maneko G. Ampoule de verre cassable contenant un liquide sous pression, é jectable en totalité lors de la cassure de l’ampoule. Brevet B. 148 no 8007471. Innov. Tech. Biol. Med. vol. 2, pp. 12–14 (1981).Google Scholar
  6. 6.
    Matía I, Fernández-Camacho F, Marco R, Kiss J, Gasset G, van Loon JJ, Medina FJ. The “Root” experiment of the “Cervantes” Spanish Soyuz Mission: Cell proliferation and nucleolar activity alterations in Arabidopsis roots germinated in real or simulated microgravity Microgravity. Science & Technology, Issue XIX-5/6 (2007), 128.Google Scholar
  7. 7.
    Anthony P, Ausseil J, Bechler B, Benguría A, Blackhall N, Briarty LG, Cogoli A, Davey MR, Garesse R, Hager R, Loddenkemper R, Marchant R, Marco R, Marthy HJ, Perry M, Power JB, Schiller P, Ugalde C, Volkmann D, Wardrop J.Preservation of viable Biological Samples for experiments in Space Laboratories J. Biotechnol. 47, 377–393 (1996).CrossRefGoogle Scholar
  8. 8.
    Leandro LJ Szewczyk NJ, Benguría A, Herranz R, Laván D, Medina FJ, Gasset G, van Loon J, Conley CA, Marco R. Comparative analysis ofDrosophila melanogaster and Caenorhabditis elegans gene expression experiments in the European Soyuz Flights to the International Space Station Adv Sp. Res, 40 (4): 506–512 (2007.Google Scholar
  9. 9.
    Leys NM, Hendrickx L, De Boever P, Baatout S, Mergeay M. Space flight effects on bacterial physiology. J Biol Regul Homeost Agents. Apr-Jun; 18(2): 193–9 (2004).Google Scholar

Copyright information

© Z-Tec Publishing, Bremen 2007

Authors and Affiliations

  • R. Herranz
    • 1
  • D. A. Laván
    • 1
  • A. Benguría
    • 2
  • P. Duque
    • 3
  • L. J. Leandro
    • 1
  • G. Gasset
    • 4
  • F. J. Medina
    • 5
  • J. van Loon
    • 6
  • R. Marco
    • 1
  1. 1.Departamento de Bioquímica-I.I. Biomé dicas “Alberto Sols”UAM-CSICMadridSpain
  2. 2.Centro Nacional de Biotecnología (CSIC)MadridSpain
  3. 3.ESAEuropean Space AgengySpain
  4. 4.GSBMSUniversité “Paul Sabatier”ToulouseFrance
  5. 5.Centro de Investigaciones Biológicas (CSIC)MadridSpain
  6. 6.Dutch Experiment Support CenterDESC @ OCB-ACTA-Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations