Microgravity Science and Technology

, Volume 19, Issue 5–6, pp 180–183 | Cite as

Actin dynamics in mouse fibroblasts in microgravity

  • Maarten J. A. Moes
  • Jose J. Bijvelt
  • Johannes Boonstra


After stimulating with the growth factor PDGF, cells exhibit abundant membrane ruffling and other morphological changes under normal gravity conditions. These morphological changes are largely determined by the actin microfilament system. Now these actin dynamics were studied under microgravity conditions in mouse fibroblasts during the DELTA mission. The aim of the present study was to describe the actin morphology in detail, to establish the effect of PDGF on actin morphology and to study the role of several actin-interacting proteins involved in introduced actin dynamics in microgravity. Identical experiments were conducted at 1G on earth as a reference. No results in microgravity were obtained due to a combination of malfunctioning hardware and unfulfilled temperature requirements.


Stress Fiber Mouse Fibroblast Actin Dynamic Simulated Microgravity Aviat Space Environ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Groot, R.P., Rijken, P.J., den Hertog, J., Boonstra, J., Verkleij A.J., de Laat, S.W., and Kruijer W.: Microgravity decreases c-fos induction and serum response element activity. J. Cell Sci. vol. 97, p. 33–38 (1990)Google Scholar
  2. 2.
    Lewis, M.L., Cubano, L.A., Zhao, B., Dinh, H.K., Pabalan, J.G., Piepmeier, E.H., and Bowman, P.D.: cDNA microarray reveals altered cytoskeletal gene expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J. vol 15(10), p. 1783–1785 (2001)Google Scholar
  3. 3.
    Semov, A., Semova, N., Lacelle, C., Marcotte, R., Petroulakis, E., Proestou, G., and Wang, E.: Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts. FASEB J. vol 16(8), p. 899–901 (2002)Google Scholar
  4. 4.
    Vassy, J., Portet, S., Beil, M., Millot, G., Fauvel-Lafeve F., Karniguian, A., Gasset, G., Irinopoulou, T., Calvo, F., Rigaut, J.P., and Schoevaert, D.: The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J. vol 15(6), p. 1104–1106 (2001)Google Scholar
  5. 5.
    Hughes-Fulford M, Lewis ML. Effects of microgravity on osteoblast growth activation. Exp Cell Res. vol 224(1), p. 103–109 (1996)CrossRefGoogle Scholar
  6. 6.
    de Groot, R.P., Rijken, P.J., Boonstra, J., Verkleij, A.J., de Laat, S.W., and Kruijer, W.: Epidermal growth factor induced expression of c-fos is influenced by altered gravity conditions. Aviat Space Environ Med. vol. 62, p. 37–40 (1991)Google Scholar
  7. 7.
    Rijken, P.J., de Groot, R.P., Kruijer, W., de Laat, S.W., Verkleij, A.J., Boonstra J.: Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells. Adv Space Res. vol. 12(1), p. 145–52 (1992)CrossRefGoogle Scholar
  8. 8.
    Rijken, P.J., de Groot, R.P., Briegleb, W., Kruijer, W., Verkleij, A.J., Boonstra, J., and de Laat S.W.: Epidermal growth factor-induced cell rounding is sensitive to simulated microgravity. Aviat Space Environ Med. vol. 62, p. 32–36 (1991)Google Scholar
  9. 9.
    Boonstra, J.: Growth factor-induced signal transduction in adherent mammalian cells is sensitive to gravity. FASEB J. vol.13, p. S35–42 (1999)Google Scholar
  10. 10.
    Boonstra, J., Moes, M.J.: Signal transduction and actin in the regulation of G1-phase progression. Crit Rev Eukaryot Gene Expr. vol. 15(3), p. 255–76 (2005)Google Scholar
  11. 11.
    Jaffe, A.B., Hall, A.: RHO GTPASES: Biochemistry and Biology. Annu Rev Cell Dev Biol. vol. 21, p. 247–69 (2005)CrossRefGoogle Scholar
  12. 12.
    Uva, B.M., Masini, M.A., Sturla, M., Prato, P., Passalacqua, M., Giuliani, M., Tagliafierro, G., and Strollo F.: Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res. vol. 934(2), p. 132–139 (2002)CrossRefGoogle Scholar
  13. 13.
    Hughes-Fulford, M.: Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res. vol. 32(8), p. 1585–93 (2003)CrossRefGoogle Scholar
  14. 14.
    Boonstra, J., Rijken, P. J., de Groot, R. P., Verkleij, A. J., van der Saag, P. T., and de Laat, S. W.: Growth factor-induced signal transduction in mammalian cells is sensitive to gravity, in: Frontiers in Biological Science in Space. Sato, A., (ed), Taiyo Printing, Tokyo p. 2–18 (1997)Google Scholar
  15. 15.
    Higashibata, A., Imamizo-Sato, M., Seki, M., Yamazaki, T., Ishioka, N.: Influence of simulated microgravity on the activation of the small GTPase Rho involved in cytoskeletal formation--molecular cloning and sequencing of bovine leukemia-associated guanine nucleotide exchange factor. BMC Biochem. vol. 7(19) (2006)Google Scholar
  16. 16.
    Mellstroom, K., Hoglund, A.S., Nister, M., Heldin, C.H., Westermark, B., Lindberg, U.: The effect of platelet-derived growth factor on morphology and motility of human glial cells. J Muscle Res Cell Motil. vol. 4(5), p. 589–609 (1983)CrossRefGoogle Scholar
  17. 17.
    Mellstrom, K., Heldin, C.H., Westermark, B.: Induction of circular membrane ruffling on human fibroblasts by platelet-derived growth factor. Exp Cell Res. vol. 177(2), p. 347–59 (1988)CrossRefGoogle Scholar

Copyright information

© Z-Tec Publishing, Bremen 2007

Authors and Affiliations

  • Maarten J. A. Moes
    • 1
  • Jose J. Bijvelt
    • 1
  • Johannes Boonstra
    • 1
  1. 1.Department of Cell Architecture and Dynamic Institute of BiomembranesUniversity of UtrechtCH UtrechtThe Netherlands

Personalised recommendations