Applied Biochemistry and Biotechnology

, Volume 69, Issue 2, pp 113–125 | Cite as

Diacetyl production mechanism by a strain ofLactococcus lactis spp.lactis bv.diacetylactis

Study of α-acetolactic acid extracellular accumulation under anaerobiosis
  • E. Rondags
  • E. Halliday
  • I. Marc
Original Articles


Diacetyl production via α-acetolactic acid (ALA) extracellular decarboxylation inLactococcus lactis spp.lactis bv.diacetylactis SD 933 cultures has been assessed under anaerobiosis both in batch and continuous fermentations at pH 5.5 and 8.0 by studying the effects of α-acetolactate decarboxylase (ADC) addition in the culture broth. This enzyme, favoring the formation of acetoin instead of diacetyl, was added extracellularly and did not disturb diacetyl production. Moreover, oxidation experiments on extracellular culture media did not reveal any increase in diacetyl amount caused by extracellular ALA oxidative decarboxylation. These observations confirm previous assertions concerning the mechanism and localization of diacetyl synthesis by theSD 933 strain.

Index entries

Lactic acid bacteria Lactococcus bacterial metabolism flavor production diacetyl 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paquot, M., Eustache, J. M., Roblain, D., and Thonart, P. (1994), inBactéries Lactiques, vol. 2, De Roissart, H. and Luquet, F. M., eds., Lorica, Uriage, F, pp. 155–167.Google Scholar
  2. 2.
    Diviès, C., Frey, L., Hubert, J. C., and De Roissart, H. (1994), inBactéries Lactiques, vol. 1, De Roissart, H. and Luquet, F. M., eds., Lorica, Uriage, F, pp. 291–301.Google Scholar
  3. 3.
    Juni, E. (1952),J. Biol. Chem. 195, 715–726.Google Scholar
  4. 4.
    Seitz, E. W., Sandine, W. E., Elliker, P. R., and Day, E. A. (1963),Can. J. Microbiol. 9, 431–441.CrossRefGoogle Scholar
  5. 5.
    Speckman, R. A. and Collins, E. B. (1968),J. Bacteriol. 95, 174–180.Google Scholar
  6. 6.
    Speckman, R. A. and Collins, E. B. (1973),Appl. Microbiol. 26, 744–746.Google Scholar
  7. 7.
    Verhue, W. M. and Tjan, F. S. B. (1991),Appl. Environ. Microbiol. 57, 3371–3377.Google Scholar
  8. 8.
    Starrenburg, M. J. C. and Hugenholtz, J. (1991),Appl. Environ. Microbiol. 57, 3535–3540.Google Scholar
  9. 9.
    Hugenholtz, J. (1993),FEMS Microbiol. Rev. 12, 165–178.CrossRefGoogle Scholar
  10. 10.
    Ramos, A., Jordan, K. N., Cogan, T. M., and Santos, H. (1994),Appl. Environ. Microbiol. 60, 1739–1748.Google Scholar
  11. 11.
    Veringa, H. A., Verburg, E. H., and Stadhouders, J. (1984),Neth. Milk Dairy J. 38, 251–263.Google Scholar
  12. 12.
    Jönsson, H. and Pettersson, H. E. (1977),Milchwissenschaft—Milk Sci. Int. 32, 513–516.Google Scholar
  13. 13.
    Monnet, C., Phalip, V., Schmitt, P., and Diviès, C. (1994),Biotechnol. Lett. 16, 257–262.CrossRefGoogle Scholar
  14. 14.
    Rondags, E., Stien, G., Germain, P., and Marc, I. (1996),Biotechnol. Lett. 18 747–752.CrossRefGoogle Scholar
  15. 15.
    De Man, J. C., Rogosa, M., and Sharpe, M. E. (1960),J. Appl. Bacteriol. 23, 130–135.Google Scholar
  16. 16.
    Stien, G., Blanchard, F., and Marc, I. (1998),Le lait in press.Google Scholar
  17. 17.
    Ho Park, S., Xing, R., and Whitman, W. B. (1995),Biochim. Biophys. Acta 1245, 366–370.Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • E. Rondags
    • 1
  • E. Halliday
    • 2
  • I. Marc
    • 1
  1. 1.Laboratoire des Sciences du Génie Chimique/C.N.R.S., U.P.R. 6811P. R. A. B. I. L.Vandoeuvre-lès-NancyFrance
  2. 2.ERASMUSUniversity College of LondonLondonUK

Personalised recommendations