Advances in Atmospheric Sciences

, Volume 18, Issue 3, pp 355–375 | Cite as

Evaluation of Haney-type surface thermal boundary conditions using a coupled atmosphere and ocean model

  • Peter C. Chu
  • Chen Yuchun
  • Lu Shihua


A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat fluxQ to air/sea temperature difference ΔT by a relaxation coefficientk. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1°x 1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface fluxQ, surface air temperatureT A, and sea surface temperatureT O. Then, we calculated the cross-correlation coefficients (CCC) betweenQ and ΔT. The ensemble mean CCC fields show (a) no correlation betweenQ and ΔT in the equatiorial regions, and (b) evident correlation (CCC≥0.7) betweenQ and ΔT in the middle and high latitudes. Additionally, we did the variance analysis and found that whenk=120 W m−2K−1, the two standard deviations, σQ and σκδT , are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value ofk (80 W m−2K−1) was found in the previous study.

Key words

Air-sea coupled system Ocean surface fluxes Surface thermal boundary condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blumberg, A., and G. Mellor, 1987: A description of a three dimensional coastal ocean circulation model. In:Three Dimensional Coastal Ocean Models (edited by N.S. Heaps), American Geophysical Union, Washington D. C., 1–16.Google Scholar
  2. Budyko, M. I., 1956: Teplovoi balans zemnoi poverkhnosti, Gidrometeorologicheskoe izdatelstvo, Leningrad, 255 pp (US Weather Bureau translation: 'Heat balance at the earth surface', 1958, PB131692, 259 pp).Google Scholar
  3. Cai, W. J., and Y. C. Chu, 1996: Ocean climate drift and interdecadal, oscillation due to a change in thermal damping.J. Climate,9, 2821–2833.CrossRefGoogle Scholar
  4. Chu, P. C., Y. C. Chen, and S. H. Lu, 1998: On Haney-type surface thermal boundary conditions for ocean circulation models.J. Phys. Oceanogr.,28, 890–901.CrossRefGoogle Scholar
  5. Greatbatch, R. J., G. Li, and S. Zhang, 1995: Hindcasting ocean climate variability using time-dependent surface data to drive a model: An idealized study.J. Phys. Oceanogr.,25, 2715–2725.CrossRefGoogle Scholar
  6. Han, Y. J., 1984: A numerical world ocean general circulation model. Part II: A baroclinic experiment.Dyn. Atmos. Oceans,8, 141–172.CrossRefGoogle Scholar
  7. Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models.J. Phys. Oceanogr.,1, 241–248.CrossRefGoogle Scholar
  8. Hansen, J., G. L. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedef, R. Ruedy, and L. Travis, 1983: Efficient three-dimensional global models for climatic studies: Models I and II.Mon. Wea. Rev.,111, 609–662.CrossRefGoogle Scholar
  9. Kleeman, R., and S. B. Power, 1995: A simple atmospheric model of surface heat flux for use in ocean modeling studies.J. Phys. Oceanogr.,25, 92–105.CrossRefGoogle Scholar
  10. Marotzke, J., and P. Stone, 1995: Atmospheric transports, the thermohaline circulation, and flux adjustments in a simple coupled model.J. Phys. Oceanogr.,25, 1350–1364.CrossRefGoogle Scholar
  11. Oberhuber, J. M., 1988: An atlas based on the COADS data set: The budgets of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean.Tech. Rep.,15, Max-Planck, Institut für Meteorologie, 199 pp.Google Scholar
  12. Pierce, D., T. P. Barnett, and U. Mikolajewicz, 1995: Competing roles of heat and freshwater flux in forcing thermohaline oscillations.J. Phys. Oceanogr.,25, 2046–2064.CrossRefGoogle Scholar
  13. Rahmstorf, S., and J. Willebrand, 1995: The role of temperature feedback stabilizing the thermohaline circulation.J. Phys. Oceanogr.,25, 787–805.CrossRefGoogle Scholar
  14. Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies.Atmosphere-Ocean,33, 683–730.Google Scholar
  15. Shapiro, R., 1970: Smoothing filtering and boundary effects.Rev. Geophys. Space Phys.,8, 359–387.CrossRefGoogle Scholar
  16. Weaver, A. J., and E. S. Sarachtk 1991: Evidence for decadal variability in an ocean general circulation model: An advective mechanism.Atmos.-Ocean,29, 197–231.Google Scholar
  17. Xu, W., R. J. Greatbatch, and C. A. Lin 1995: The sensitivity of an eddy resoliving model to the surface thermal boundary conditions.J. Geophys. Res.,100, 15899–15914.CrossRefGoogle Scholar

Copyright information

© Advances in Atmospheric Sciences 2001

Authors and Affiliations

  • Peter C. Chu
    • 1
  • Chen Yuchun
    • 2
  • Lu Shihua
    • 2
  1. 1.Department of OceanographyNaval Postgraduate SchoolMontereyUSA
  2. 2.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhou

Personalised recommendations