Skip to main content
Log in

Evaluation of Haney-type surface thermal boundary conditions using a coupled atmosphere and ocean model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat fluxQ to air/sea temperature difference ΔT by a relaxation coefficientk. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1°x 1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface fluxQ, surface air temperatureT A, and sea surface temperatureT O. Then, we calculated the cross-correlation coefficients (CCC) betweenQ and ΔT. The ensemble mean CCC fields show (a) no correlation betweenQ and ΔT in the equatiorial regions, and (b) evident correlation (CCC≥0.7) betweenQ and ΔT in the middle and high latitudes. Additionally, we did the variance analysis and found that whenk=120 W m−2K−1, the two standard deviations, σQ and σκδT , are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value ofk (80 W m−2K−1) was found in the previous study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blumberg, A., and G. Mellor, 1987: A description of a three dimensional coastal ocean circulation model. In:Three Dimensional Coastal Ocean Models (edited by N.S. Heaps), American Geophysical Union, Washington D. C., 1–16.

    Google Scholar 

  • Budyko, M. I., 1956: Teplovoi balans zemnoi poverkhnosti, Gidrometeorologicheskoe izdatelstvo, Leningrad, 255 pp (US Weather Bureau translation: 'Heat balance at the earth surface', 1958, PB131692, 259 pp).

    Google Scholar 

  • Cai, W. J., and Y. C. Chu, 1996: Ocean climate drift and interdecadal, oscillation due to a change in thermal damping.J. Climate,9, 2821–2833.

    Article  Google Scholar 

  • Chu, P. C., Y. C. Chen, and S. H. Lu, 1998: On Haney-type surface thermal boundary conditions for ocean circulation models.J. Phys. Oceanogr.,28, 890–901.

    Article  Google Scholar 

  • Greatbatch, R. J., G. Li, and S. Zhang, 1995: Hindcasting ocean climate variability using time-dependent surface data to drive a model: An idealized study.J. Phys. Oceanogr.,25, 2715–2725.

    Article  Google Scholar 

  • Han, Y. J., 1984: A numerical world ocean general circulation model. Part II: A baroclinic experiment.Dyn. Atmos. Oceans,8, 141–172.

    Article  Google Scholar 

  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models.J. Phys. Oceanogr.,1, 241–248.

    Article  Google Scholar 

  • Hansen, J., G. L. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedef, R. Ruedy, and L. Travis, 1983: Efficient three-dimensional global models for climatic studies: Models I and II.Mon. Wea. Rev.,111, 609–662.

    Article  Google Scholar 

  • Kleeman, R., and S. B. Power, 1995: A simple atmospheric model of surface heat flux for use in ocean modeling studies.J. Phys. Oceanogr.,25, 92–105.

    Article  Google Scholar 

  • Marotzke, J., and P. Stone, 1995: Atmospheric transports, the thermohaline circulation, and flux adjustments in a simple coupled model.J. Phys. Oceanogr.,25, 1350–1364.

    Article  Google Scholar 

  • Oberhuber, J. M., 1988: An atlas based on the COADS data set: The budgets of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean.Tech. Rep.,15, Max-Planck, Institut für Meteorologie, 199 pp.

  • Pierce, D., T. P. Barnett, and U. Mikolajewicz, 1995: Competing roles of heat and freshwater flux in forcing thermohaline oscillations.J. Phys. Oceanogr.,25, 2046–2064.

    Article  Google Scholar 

  • Rahmstorf, S., and J. Willebrand, 1995: The role of temperature feedback stabilizing the thermohaline circulation.J. Phys. Oceanogr.,25, 787–805.

    Article  Google Scholar 

  • Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies.Atmosphere-Ocean,33, 683–730.

    Google Scholar 

  • Shapiro, R., 1970: Smoothing filtering and boundary effects.Rev. Geophys. Space Phys.,8, 359–387.

    Article  Google Scholar 

  • Weaver, A. J., and E. S. Sarachtk 1991: Evidence for decadal variability in an ocean general circulation model: An advective mechanism.Atmos.-Ocean,29, 197–231.

    Google Scholar 

  • Xu, W., R. J. Greatbatch, and C. A. Lin 1995: The sensitivity of an eddy resoliving model to the surface thermal boundary conditions.J. Geophys. Res.,100, 15899–15914.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, P.C., Yuchun, C. & Shihua, L. Evaluation of Haney-type surface thermal boundary conditions using a coupled atmosphere and ocean model. Adv. Atmos. Sci. 18, 355–375 (2001). https://doi.org/10.1007/BF02919315

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919315

Key words

Navigation