Immunologic Research

, Volume 11, Issue 3–4, pp 203–216 | Cite as

Fcγ receptors in cancer and infectious disease

  • Michael W. Fanger
  • David V. Erbe
FcγR in Cancer and Infectious Diseases


Through interaction with antibody, IgG Fc receptors provide an interface between specific humoral immunity and FcγR-bearing host cells. FcγR trigger such diverse functions as immune complex clearance, phagocytosis of opsonized pathogens, reactive oxygen intermediate and enzyme secretion, and antibody-dependent cellular cytotoxicity (ADCC). Moreover, FcγR are the exclusive trigger molecules for tumor cell killing by human myeloid cells. Studies of FcγR function have been aided by the use of bispecific antibodies to link cells or pathogens to specific host cell molecules, including FcγR. These reagents have permitted determination of the role of FcγR in ADCC of the protozoan,Toxoplasma gondii, by human effector cells. This approach has also indicated that FcγR do not serve as entry points for viruses such as dengue virus and HIV. Taken together, these results provide insight into the utility of manipulating FcγR function in the therapy of cancer and infectious disease.

Key Words

Cytotoxicity Antibody-dependent cell-mediated cytotoxicity Fc receptor Toxoplasma gondii Dengue virus Human immunodeficiency virus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Unkeless JC, Scigliano E, Freedman VH: Structure and function of human and murine receptors for IgG. Annu Rev Immunol 1988;6:251.PubMedCrossRefGoogle Scholar
  2. 2.
    Fanger MW, Shen L, Graziano RF, Guyre PM: Cytotoxicity mediated by human Fc receptors for IgG. Immunol Today 1989;10:92.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson CL, Guyre PM, Whitin JC, Ryan DH, Looney RJ, Fanger MW: Monoclonal antibodies to Fc receptors for IgG on human mononuclear phagocytes. Antibody characterization and induction of superoxide production in a monocyte cell line. J Biol Chem 1986;261:12856.PubMedGoogle Scholar
  4. 4.
    Guyre PM, Graziano RF, Vance BA, Morganelli PM, Fanger MW: Monoclonal antibodies that bind to distinct epitopes on FcγRI are able to trigger receptor function. J Immunol 1989;143:1650.PubMedGoogle Scholar
  5. 5.
    Anderson CL, Abraham GN: Characterization of the Fc receptor for IgG on a human macrophage cell line, U937. J Immunol 1980;125: 2735.PubMedGoogle Scholar
  6. 6.
    Kurlander RJ, Batker J: The binding of human immunoglobulin G1 monomer and small, covalently cross-linked polymers of immunoglobulin G1 to human peripheral blood monocytes and polymorphonuclear leukocytes. J Clin Invest 1982;69:1.PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson CL, Looney RJ, Culp DJ, Ryan DH, Fleit HB, Utell MJ, Frampton MW, Manganiello PD, Guyre PM: Alveolar and peritoneal macrophages bear three distinct classes of Fc receptors for IgG. J Immunol 1990;145:196.PubMedGoogle Scholar
  8. 8.
    Fries LF, Brickman CM, Frank MM: Monocyte receptors for the Fc portion of IgG increase in number in autoimmune hemolytic anemia and other hemolytic states and are decreased by glucocorticoid therapy. J Immunol 1983;131:1240.PubMedGoogle Scholar
  9. 9.
    Rossman MD, Chien P, Cassizzi-Cpreck A, Elias JA, Hollecin A, Schreiber AD: The binding of monomeric IgG to human blood monocytes and alveolar macrophages. Am Rev Respir Dis 1986;133:292.PubMedGoogle Scholar
  10. 10.
    Petroni KC, Shen L, Guyre PM: Modulation of human polymorphonuclear leukocyte IgG Fc receptors and Fc receptor-mediated functions by IFN-γ and glucocorticoids. J Immunol 1988;140:3467.PubMedGoogle Scholar
  11. 11.
    Perussia B, Dayton ET, Lazarus R, Fanning V, Trinchieri G: Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells. J Exp Med 1983;158:1092.PubMedCrossRefGoogle Scholar
  12. 12.
    Girard MT, Hjaltadottir S, Fejes-Toth AN, Guyre PM: Glucocorticoids enhance the gamma-interferon augmentation of human monocyte immunoglobulin G Fc receptor expression. J Immunol 1987; 138:3235.PubMedGoogle Scholar
  13. 13.
    Guyre PM, Girard MT, Morganelli PM, Manganiello PD: Glucocorticoid effects on the production and actions of immune cytokines. J Steroid Biochem 1988;30:89.PubMedCrossRefGoogle Scholar
  14. 14.
    Looney RJ, Abraham GN, Anderson CL: Human monocytes and U937 cells bear two distinct Fc receptors for IgG. J Immunol 1986; 136:1641.PubMedGoogle Scholar
  15. 15.
    Vaughn M, Taylor M, Mohanakumar T: Characterization of human IgG Fc receptors. J Immunol 1985; 135:4059.PubMedGoogle Scholar
  16. 16.
    Zipf TF, Lauzon GJ, Longenecker BM: A monoclonal antibody detecting a 39,000 M.W. molecule that is present on B lymphocytes and chronic lymphocytic leukaemia cells but is rare on acute lymphoblastic leukaemia blasts. J Immunol 1983; 131:3064.PubMedGoogle Scholar
  17. 17.
    Anderson CL, Ryan DH, Looney RJ, Leary PC: Structural polymorphism of the human monocyte 40 kilodalton Fc receptor for IgG. J Immunol 1987;138:2254.PubMedGoogle Scholar
  18. 18.
    Hibbs ML, Bonadonna L, Scott BM, McKenzie IFC: Molecular cloning of a human immunoglobulin G Fc receptor. Proc Natl Acad Sci USA 1988;85:2240.PubMedCrossRefGoogle Scholar
  19. 19.
    Stengelin S, Stamenkovic I, Seed B: Isolation of cDNAs for two distinct human Fc receptors by ligand affinity cloning. EMBO J 1988;7:1053.PubMedGoogle Scholar
  20. 20.
    Stuart SG, Trounstine ML, Vaux DJT, Koch T, Martens CL, Mellman I, Moore KW: Isolation and expression of cDNA clones encoding a human receptor for IgG (Fc gamma R11). J Exp Med 1987;166: 1668.PubMedCrossRefGoogle Scholar
  21. 21.
    Fleit HB, Wright SK, Unkeless JC: Human neutrophil Fc-γ receptor distribution and structure. Proc Natl Acad Sci USA 1982;79:3275.PubMedCrossRefGoogle Scholar
  22. 22.
    Huizinga TWJ, van der Schoot CE, Jost C, Klaassen R, Kleijer M, Kr von dem Borne AEG, Roos D, Tetteroo PAT: The PI-linked receptor for FcRIII is released on stimulation of neutrophils. Nature 1988;333: 667.PubMedCrossRefGoogle Scholar
  23. 23.
    Selvaraj R, Rosse WF, Silber R, Springer TA: The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 1988;333:565.PubMedCrossRefGoogle Scholar
  24. 24.
    Clarkson SB, Kimberly RP, Valinsky JE, Witmer MD, Bussel JB, Nachman RL, Unkeless JC: Blockade of clearance of immune complexes by an anti-Fc gamma receptor monoclonal antibody. J Exp Med 1986;164:474.PubMedCrossRefGoogle Scholar
  25. 25.
    Pfefferkorn L, Fanger MW: Cross-linking of the high affinity Fc receptor for human immunoglobulin G1 triggers transient activation of NADPH oxidase activity. Continuous oxidase activator requires continuous de novo receptor cross-linking. J Biol Chem 1988;264:14112.Google Scholar
  26. 26.
    Pfefferkorn L, Fanger MW: Transient activation of the NADPH oxidase through Fc gamma R1. Oxidase deactivation precedes internalization of cross-linked receptors. J Immunol 1989;143:2640.PubMedGoogle Scholar
  27. 27.
    Anderson CL, Shen L, Eicher DM, Wewers MD, Gill JK: Phagocytosis mediated by three distinct Fcγ receptor classes on human leukocytes. J Exp Med 1990;171:1333.PubMedCrossRefGoogle Scholar
  28. 28.
    Shen L, Graziano RF, Fanger MW: The functional properties of FcγRI, II and III on human myeloid cells: A comparative study of killing of erythrocytes and tumor cells mediated through the different Fc receptors. Mol Immunol 1989;26: 959.PubMedCrossRefGoogle Scholar
  29. 29.
    Fanger MW, Graziano RF, Shen L, Guyre PM: Fc gamma receptors in cytotoxicity exerted by mononuclear cells. Chem Immunol 1989;47: 214.PubMedGoogle Scholar
  30. 30.
    Shen L, Guyre PM, Anderson CL, Fanger MW: Heteroantibody-mediated cytotoxicity. Antibody to the high-affinity Fc receptor for IgG mediates cytotoxicity by human monocytes, which is enhanced by interferon-γ and is not blocked by human IgG. J Immunol 1986;137:3378.PubMedGoogle Scholar
  31. 31.
    Shen L, Guyre PM, Fanger MW: PMN function triggered through the high affinity Fc receptor for monomeric IgG. J Immunol 1987;139: 534.PubMedGoogle Scholar
  32. 32.
    Graziano RF, Looney RJ, Shen L, Fanger MW: FcγR mediated killing by eosinophils. J Immunol 1989; 142:230.PubMedGoogle Scholar
  33. 33.
    Shen L, Guyre PM, Fanger MW: Direct stimulation of ADCC by cloned gamma interferon is not ablated by glucocorticoids. Studies using a human monocyte-like cell line (U-937). Mol Immunol 1984;21:167.PubMedCrossRefGoogle Scholar
  34. 34.
    Erbe DV, Collins JE, Shen L, Graziano RF, Fanger MW: The effect of cytokines on the expression and function of Fc receptors for IgG on human myeloid cells. Mol Immunol 1990;27:57.PubMedCrossRefGoogle Scholar
  35. 35.
    Graziano RF, Fanger MW: Human monocyte-mediated cytotoxicity: The use of Ig-bearing hybridomas as target cells to detect trigger molecules on the monocyte cell surface. J Immunol 1987;138:945.PubMedGoogle Scholar
  36. 36.
    Graziano RF, Fanger MW: 1987. FcγRI and FcγRII on monocytes and granulocytes are cytotoxic trigger molecules for tumor cells. J Immunol 1987;139:3536.PubMedGoogle Scholar
  37. 37.
    Ball ED, Guyre PM, Shen L, Glynn JM, Maliszewski CR, Baker PE, Fanger MW: Gamma interferon induces monocytoid differentiation in the HL-60 cell line. J Clin Invest 1984;73:1072.PubMedCrossRefGoogle Scholar
  38. 38.
    Dillman RO: Monoclonal antibodies for treating cancer. Ann Intern Med 1989;111:592.PubMedGoogle Scholar
  39. 39.
    Houghton AN, Scheinberg DA: Monoclonal antibodies: Potential applications to the treatment of cancer; in Seminars in Oncology. Philadelphia, Grune & Stratton, 1986, vol 13, p 165.Google Scholar
  40. 40.
    Ortaldo JR, Woodhouse C, Morgan AC, Herberman RB, Cheresh DA, Reisfeld R: Analysis of effector cells in human antibody-dependent cellular cytotoxicity with murine monoclonal antibodies. J Immunol 1987; 138:3566.PubMedGoogle Scholar
  41. 41.
    Hellstrom I, Brankovan V, Hellstrom KE: Strong antitumor activities of IgG3 antibodies to a human melanoma-associated ganglioside. Proc Natl Acad Sci USA 1985;82: 1499.PubMedCrossRefGoogle Scholar
  42. 42.
    Kipps TJ, Parham P, Punt J, Herzenberg LA: Important of immunoglobulin isotype in human antibody-dependent, cell mediated cytotoxicity directed by mouse monoclonal antibodies. J Exp Med 1985;161:1.PubMedCrossRefGoogle Scholar
  43. 43.
    Lubeck MD, Steplewski Z, Baglia F, Klein MH, Dorrington KJ, Koprowski H: The interaction of murine IgG subclass proteins with human monocyte Fc receptors. J Immunol 1985;135:1299.PubMedGoogle Scholar
  44. 44.
    Shakib F: Basic and Clinical Aspects of IgG Subclasses. Monogr Allergy. Basel, Karger, 1986, vol 19.Google Scholar
  45. 45.
    Herlyn D, Powe J, Ross A, Herlyn M, Koprowski H: Inhibition of human tumor growth by IgG2a monoclonal antibodies correlates with antibody density of tumor cells. J Immunol 1985;134:1300.PubMedGoogle Scholar
  46. 46.
    Weiner LM, Moldofsky PJ, Gatenby RA, O’Dwyer J, O’Brien J, Litwin S, Comis RL: Antibody delivery and effector cell activation in a phase II trial of recombinant gamma-interferon and the murine monoclonal antibody CO17-1A in advanced colorectal carcinoma. Cancer Res 1988;48:2568.PubMedGoogle Scholar
  47. 47.
    Liu AYT, Robinson RR, Murray ED, Ledbetter JA, Hellstrom I, Hellstrom KE: Production of mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J Immunol 1987; 139:3521.PubMedGoogle Scholar
  48. 48.
    Morrison SL: New approaches to the production of monoclonal antibodies. Science 1988;239:G28.PubMedCrossRefGoogle Scholar
  49. 49.
    Liu AY, Robinson RR, Hellstrom KE, Murray ED, Chang CP, Hellstrom I: Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc Natl Acad Sci USA 1987;84:3439.PubMedCrossRefGoogle Scholar
  50. 50.
    Sun LK, Curtis P, Rakowicz-Szulczynska E, Ghrayeb J, Chang N, Morrison SL, Koprowski H: Chimeric antibody with human constant regions and mouse variable regions directed against carcinoma-associated antigen 17-1A. Proc Natl Acad Sci USA 1987;84: 214.PubMedCrossRefGoogle Scholar
  51. 51.
    Segal DM, Snider DP: Targeting and activation of cytotoxic lymphocytes. Chem Immunol 1989;47:179.PubMedCrossRefGoogle Scholar
  52. 52.
    Karpovsky B, Titus JA, Stephany DA, Segal DM: Production of target specific effector cells using heterocross-linked aggregates containing anti-target cell and anti-Fcγ receptor antibodies. J Exp Med 1984;160: 1686.PubMedCrossRefGoogle Scholar
  53. 53.
    Titus JA, Perez P, Kaubisch A, Garrido MA, Segal DM: Human K/NK cells targeted with heterocrosslinked antibodies specifically lyse tumor cells in vitro and prevent tumor in vivo. J Immunol 1987;139:3153.PubMedGoogle Scholar
  54. 54.
    Weiner LM, Garcia-Palazzo I, Kitson J, Stanfield J, Waas J, Gercel-Taylor C: Destruction of multicellular human tumor spheroids by lymphokine-activated killer (LAK) cells requires bispecific monoclonal antibody targeting. 2nd Int Conf on Bi-specific Antibodies and Targeted Cellular Cytotoxicity, 1991, in press.Google Scholar
  55. 55.
    Griffin FM Jr: Mononuclear cell phagocytic mechanisms and host defense; in Gallin JI, Fauci AS (eds): Advances in Host Defense Mechanisms. New York, Raven Press, 1982, vol 1, p 91.Google Scholar
  56. 56.
    Keysary A, McCaul TF, Winkler HH: Roles of the Fc receptor and respiratory burst in killing ofRicksettsia prowazekii by macrophage-like cell lines. Infect Immun 1989; 57:2390.PubMedGoogle Scholar
  57. 57.
    Vincendeau P, Daeron M, Daulouede S: Identification of antibody classes and Fc receptors responsible for phagocytosis ofTrypanosoma musculi by mouse macrophages. Infect Immun 1986;53:600.PubMedGoogle Scholar
  58. 58.
    Benach JL, Fleit HB, Habicht GS, Coleman JL, Bosler EM, Lane BP: Interactions of phagocytes with the Lyme disease spirochete: Role of the Fc receptor. J Infect Dis 1984;150: 497.PubMedGoogle Scholar
  59. 59.
    Horwitz MA: The roles of the Fc and C3 receptors in the phagocytosis and killing of bacteria by human phagocytes. J Reticuloendothel Soc 1980;28:17.Google Scholar
  60. 60.
    Khalife J, Dunne DW, Richardson BA, Mazza G, Thorne KJI, Capron A, Butterworth AE: Functional role of human IgG subclasses in eosinophil-mediated killing of schistosomula ofSchistosoma mansoni. J Immunol 1989;142:4422.PubMedGoogle Scholar
  61. 61.
    Ho M, White NJ, Looareesuwan S, Wattanagoon Y, Lee SH, Walport MJ, Bunnag D, Harinasuta T: Splenic Fc receptor function in host defense and anemia in acute plasmodium falciparum malaria. J Infect Dis 1990;161:555.PubMedGoogle Scholar
  62. 62.
    Joiner KA, Fuhrman SA, Miettinen HM, Kasper LH, Mellman I:Toxoplasma gondii: Fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 1990;249:641.PubMedCrossRefGoogle Scholar
  63. 63.
    Halstead SB: Pathogenesis of dengue: Challenges to molecular biology. Science 1988;239:476.PubMedCrossRefGoogle Scholar
  64. 64.
    Halstead SB, O’Rourke FJ, Allison AC: Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 1977;146:201.PubMedCrossRefGoogle Scholar
  65. 65.
    Kontny U, Kurane I, Ennis FA: Interferon gamma augments Fc receptor-mediated dengue virus infection of human monocytic cells. J Virol 1988;62:3928.PubMedGoogle Scholar
  66. 66.
    Littaua R, Kurane I, Ennis FA: Human IgG FcγRII mediates antibody dependent enhancement of dengue virus infection. J Immunol 1990; 144:3183.PubMedGoogle Scholar
  67. 67.
    Schlesinger JJ, Brandriss MW: Growth of 17D yellow fever virus in a macrophage like cell line, U937: Role of Fc and viral receptors in antibody-mediated infection. J Immunol 1981;127:659.PubMedGoogle Scholar
  68. 68.
    Takeda A, Tuazon CU, Ennis FA: Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science 1988;242:580.PubMedCrossRefGoogle Scholar
  69. 69.
    Homsy J, Meyer M, Tateno M, Clarkson S, Levy JA: The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science 1989;244:1357.PubMedCrossRefGoogle Scholar
  70. 70.
    Krilov LR, Anderson LJ, Marcoux L, Bonagura VR, Wedgwood JF: Antibody-mediated enhancement of respiratory syncytial virus infection in two monocyte/macrophage cell lines. J Infect Dis 1989;160:777.PubMedGoogle Scholar
  71. 71.
    McKeating JA, Griffiths PD, Weiss RA: HIV susceptibility conferred to human fibroblasts by cytomegalovirus-induced Fc receptor. Nature 1990;343:659.PubMedCrossRefGoogle Scholar
  72. 72.
    Remington JS, Desmonts G: Toxoplasmosis; in Remington JS, Klein JO (eds): Infectious Disease of the Fetus and Newborn Infant, ed 2. Philadelphia, Saunders, 1983, p 143.Google Scholar
  73. 73.
    Catterall JR, Black CM, Leventhal JP, Rizk NW, Wachtel JS, Remington JS: Nonoxidative microbicidal activity in normal human alveolar and peritoneal macrophages. Infect Immun 1987;55:1635.PubMedGoogle Scholar
  74. 74.
    Wilson CB, Remington JS: Activity of human blood leukocytes againstToxoplasma gondii. J Infect Dis 1979;140:890.PubMedGoogle Scholar
  75. 75.
    Wilson CB, Westall J: Activation of neonatal and adult human macrophages by alpha, beta and gamma interferons. Infect Immun 1985;49: 351.PubMedGoogle Scholar
  76. 76.
    McLeod R, Estes R, Mack DG, McLeod EG: Effects of human alveolar macrophages and peripheral blood monocytes onToxoplasma gondii. J Infect Dis 1983;147:957.PubMedGoogle Scholar
  77. 77.
    McLeod R, Bensch KG, Smith SM, Remington JS: Effects of human peripheral blood monocytes, monocyte-derived macrophages and spleen mononuclear phagocytes onToxoplasma gondii. Cell Immunol 1980;54:330.PubMedCrossRefGoogle Scholar
  78. 78.
    Murray HW, Rubin BY, Carriero SM, Harris AM, Jaffee EA: Human mononuclear phagocyte antiprotozoal mechanisms: Oxygen-dependent vs oxygen-independent activity against intracellularToxoplasma gondii. J Immunol 1985;134:1982.PubMedGoogle Scholar
  79. 79.
    Erbe DV, Pfefferkorn ER, Fanger MW: Functions of the different human IgG Fc receptors in mediating killing ofToxoplasma gondii. J Immunol 1991;146:3145.PubMedGoogle Scholar
  80. 80.
    Burke DS, Nisalak A, Johnson DE, Scott RM: A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg 1988;38:172.PubMedGoogle Scholar
  81. 81.
    Halstead SB, Nimmannitya S, Cohen SN: Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 1970;42: 311.PubMedGoogle Scholar
  82. 82.
    Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen J, Salitul V, Phanthumachinda B, Halstead SB: Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayond, Thailand. Am J Epidemiol 1984;120:653.PubMedGoogle Scholar
  83. 83.
    Mady BJ, Erbe DV, Kurane I, Fanger MW, Ennis FA: Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fc receptors, 1991; 147:3139.Google Scholar
  84. 84.
    Collman R, Godfrey B, Cutilli J, Rhodes A, Hassan NF, Sweet R, Douglas SD, Friedman H, Nathanson N, Gonzalez-Scarano FJ: Macrophage-tropic strains of human immunodeficiency virus type 1 utilize the CD4 receptor. Virology 1990; 64:4468.Google Scholar
  85. 85.
    Jouault T, Chapuis F, Olivier R, Parrvicini C, Bahraoui E, Gluckman JC: HIV infection of monocytic cells: role of antibody-mediated virus binding to Fc-gamma receptors. AIDS 1989;3:125.PubMedCrossRefGoogle Scholar
  86. 86.
    Zeira M, Byrn RA, Groopman JE: Inhibition of serum-enhanced HIV-1 infection of U937 monocytoid cells by recombinant soluble CD4 and anti-CD4 monoclonal antibody. AIDS Res Hum Retroviruses 1990; 6:629.PubMedCrossRefGoogle Scholar
  87. 87.
    Perno CF, Baseler MW, Broder S, Yarchoan R: Infection of monocytes by human immunodeficiency virus type 1, blocked by inhibitors of CD4-gp120 binding, even in the presence of enhancing antibodies. J Exp Med 1990;171:1043.PubMedCrossRefGoogle Scholar
  88. 88.
    Connor RI, Guyre PM, Dinces N, Romet-Lemonne J-L, Fanger MW: Fc receptors for IgG on human monocytes and macrophages are not infectivity receptors for HIV. Proc Natl Acad Sci USA 1991;88:9593.PubMedCrossRefGoogle Scholar
  89. 89.
    Koyanagi Y, Miles S, Mitsuyasu RT, Merrill JE, Vinters HV, Chen ISY: Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 1987;236:819.PubMedCrossRefGoogle Scholar
  90. 90.
    Bolognesi DP: AIDS. Do antibodies enhance the infection of cells by HIV?. Nature 1989;340:431.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • Michael W. Fanger
    • 1
    • 2
  • David V. Erbe
    • 1
  1. 1.Department of MicrobiologyDartmouth Medical SchoolLebanon(USA)
  2. 2.Department of MedicineDartmouth Medical SchoolLebanon(USA)

Personalised recommendations