Survey of Immunologic Research

, Volume 3, Issue 4, pp 288–294 | Cite as

Granulocyte activation

Biochemical events associated with the mobilization of calcium
  • P. H. Naccache
  • R. I. Sha’afi


The past few years have seen a significant refinement in our understanding of the mechanism of activation of granulocytes. The involvement of surface receptors and the role of calcium as second messenger have been further supported by recent data. However, with the exception of the unexamined potential role of ITP, all the previous hypotheses attempting to provide a biochemical basis for the transduction mechanisms involved in calcium mobilization have either been dismissed or at the least been seriously weakened by lack of experimental support. A particularly glaring example of the work that still needs to be done is the near total lack of knowledge about stimuli-induced changes in the physical properties of the plasma membrane of these cells and of the biochemical targets of the raised levels of cytoplasmic calcium (e.g. protein kinases). Glimpses into the nature of the calcium-independent pathway of neutrophil activation have been provided by phorbol esters. The modulatory nature of the role of cyclic mucleotides appears to have been established, its biochemical basis, however, is unknown. The description of the dynamic nature of the neutrophils’ cytoskeletal structures should lay the foundation of the understanding of the regulation of the neutrophils’ force generating system, the structure(s) ultimately responsible for the expression of the critical granulocyte functions of locomotion, phagocytosis, and granule fusion.


Human Neutrophil Chemotactic Factor Calcium Mobilization Formyl Peptide Receptor Chemotactic Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bareis, D.L.; Hirata, F.; Schiffmann, E.; Axelrod, J.: Phospholipid metabolism, calcium flux, and the receptor mediated induction of chemotaxis in rabbit neutrophils. J. Cell Biol.93: 690–697 (1982).PubMedCrossRefGoogle Scholar
  2. Bormann, B.J.; Huang, C.-K.; Mackin, W.M.; Becker, E.L.: Receptor-mediated activation of a phospholipase A2 in rabbit neutrophil plasma membrane. Proc. natn. Acad. Sci. USA (in press, 1984).Google Scholar
  3. Chandler, D.; Meusel, G.; Schumaker, E.; Stapleton, D.: FMLP-induced enzyme release from neutrophils: a role for intracellular calcium. Am. J. Physiol.245: C196-C202 (1983).PubMedGoogle Scholar
  4. Chenoweth, D.E.; Goodman, M.G.: The C5a receptor of neutrophils and macrophages; in Keller, Till, Leukocyte locomotion and chemotaxis, pp. 252–269 (Birkhäuser, Basel 1983).Google Scholar
  5. Coates, T.D.; Torres, M.; Williams, L.V.; Sisken, J.E.; Baehner, R.L.: Localization of the chlorotetracycline labelled pool of trigger calcium in human neutrophils by quantitative video intensification microscopy. J. Cell Biol.97: 420a (1983).Google Scholar
  6. Cockcroft, S.: Phosphatidylinositol metabolism in mast cells and neutrophils. Cell Calcium3: 337–349 (1982).PubMedCrossRefGoogle Scholar
  7. Downs, P.; Michell, R.H.: Phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate: lipids in search of a function. Cell Calcium3: 467–502 (1982).CrossRefGoogle Scholar
  8. Fletcher, M.P.; Gallin, J.I.: Human neutrophils contain an intracellular pool of putative receptors for the chemoattractant N-formyl-methionyl-leucyl-phenylalanine. Blood62: 792–799 (1983).PubMedGoogle Scholar
  9. Garcia-Castro, I.; Mato, J.M.; Vasanthakuman, G.; Wiesmann, W.P.; Schiffmann, E.; Chiang, P.K.: Paradoxical effects of adenosine on neutrophil chemotaxis. J. biol. Chem.255: 4345–4549 (1983).Google Scholar
  10. Goldman, D.W.; Goetzl, E.J.: Specific binding of leukotriene B4 to receptors on human polymorphonuclear leukocytes. J. Immun.129: 1600–1604 (1982).PubMedGoogle Scholar
  11. Gomperts, B.: Involvement of guanine nucleotide binding protein in the gating of Ca2+ by receptors. Nature, Lond.306: 64–66 (1983).CrossRefGoogle Scholar
  12. Holmes, R.P.; Yoss, N.L.: Failure of phosphatidic acid to translocate Ca2+ across phosphatidylcholine membranes. Nature, Lond.305: 637–638 (1983).CrossRefGoogle Scholar
  13. Huang, C.-K.; Hill, J.M.; Bormann, B.-J.; Mackin, W.M.; Becker, E.L.: Endogenous substrates for cyclic AMP-dependent and calcium-dependent protein phosphorylation in rabbit peritoneal neutrophils. Biochim. biophys. Acta.760: 126–135 (1983).PubMedGoogle Scholar
  14. Jackowski, S.; Sha’afi, R.I.: Response of adenosine cyclic 3′, 5′-monophosphate level in rabbit neutrophils to the chemotactic peptide formyl-methionyl-leucyl-phenylalanine. Molec. Pharmacol.16: 473–481 (1979).Google Scholar
  15. Jesaitis, A.J.; Naemura, J.R.; Painter, R.G.; Sklar, L.A.; Cochrane, C.G.: The fate of an N-formylated chemotactic peptide in stimulated human granulocytes. J. biol. Chem.258: 1969–1977 (1983).Google Scholar
  16. Koo, C.; Lefkowitz, R.I.; Snyderman, R.: The oligopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity states. Biochem. biophys. Res. Commun.106: 442–449 (1982).PubMedCrossRefGoogle Scholar
  17. Mackin, W.M.; Huang, C.-K.; Becker, E.L.: The formyl peptide chemotactic receptor on rabbit peritoneal neutrophils. J. Immun.129: 1608–1611 (1982).PubMedGoogle Scholar
  18. Michell, R.H.: Inositol phospholipids and cell surface receptor function. Biochim. biophys. Acta415: 81–147 (1975).PubMedGoogle Scholar
  19. Naccache, P.H.; Sha’afi, R.I.: Arachidonic acid, leukotriene B4 and neutrophil activation. Ann. N.Y. Acad. Sci. (in press, 1984).Google Scholar
  20. Niedel, J.E.; Cuatrecasas, P.: Formyl peptide chemotactic receptors of leukocytes and macrophages. Curr. Top. cell. Regul.17: 137–170 (1980).PubMedGoogle Scholar
  21. Palmer, R.J.J.; Salmon, J.A.: Release of leukotriene B4 from human neutrophils and its relationship to degranulation induced by N-formyl-methionyl-leucyl-phenylalanine, serum treated zymosan and the ionophore A23187. Immunology.50: 65–73 (1983).PubMedGoogle Scholar
  22. Pozzan, T.; Lew, D.P.; Wollheim, C.B.; Tsien, R.Y.: Is cytosolic ionized calcium regulating neutrophil activation? Science221: 1413–1415 (1983).PubMedCrossRefGoogle Scholar
  23. Schiffmann, E.; Corcoran, B.A.; Wahl, S.A.: N-for-mylmethionyl peptides as chemoattractants for leucocytes. Proc. natn. Acad. Sci. USA72: 1059–1062 (1975).CrossRefGoogle Scholar
  24. Schmitt, M.; Painter, R.C.; Jesaitis, A.J.; Preissner, K.; Sklar, L.A.; Cochrane, C.G.: Photoaffinity labelling of the N-formyl peptide receptor binding site of intact human polymorphonuclear leukocytes. J. biol. Chem.258: 649–654 (1983).PubMedGoogle Scholar
  25. Schneider, C; Zanetti, M.; Romeo, D.: Surface reactive stimuli selectively increase protein phosphorylation in human neutrophils. FEBS Lett.127: 4–8 (1981).PubMedCrossRefGoogle Scholar
  26. Serhan, C; Anderson, P.; Goodman, E.; Dunham, P.; Weissmann, G.: Phosphatidate and oxidized fatty acids are calcium ?onophores J. biol. Chem.256: 2736–2741 (1982).Google Scholar
  27. Sha’afi, R.I.; Naccache, P.H.: Ionic events in neutrophil chemotaxis and secretion. Adv. Inflammation Res., vol. 2, pp. 115–148 (Raven Press, New York 1981).Google Scholar
  28. Sha’afi, R.I.; White, J.R.; Molski, T.F.P.; Shefcyk, J.; Volpi, M.; Naccache, P.H.; Feinstein, M.B.: Phorbol 12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular calcium. Biochem. biophys. Res. Commun.114: 638–645 (1983).PubMedCrossRefGoogle Scholar
  29. Simchowitz, L.; Spilberg, I.; Atkinson, J.P.: Evidence that the functional responses of human neutrophils occur independently of transient elevations in cAMP levels. J. cyclic Nucleotide Prot. Phosphoryl. Res.9: 35–47 (1983).Google Scholar
  30. Sirois, P.; Borgeat, P.: Mediators of immediate hypersensitivity. Immunopharmacology4: 201–222 (1982).CrossRefGoogle Scholar
  31. Snyderman, R.; Edge, S.; Pike, M.C.: Macrophage chemotactic factor receptor exists in two interconvertible affinities modulated by guanine nucleotides. Clin. Res.30: 521A (1982).Google Scholar
  32. Snyderman, R.; Goetzl, E.J.: Molecular and cellular mechanisms of leukocyte chemotaxis. Science213: 830–837 (1981).PubMedCrossRefGoogle Scholar
  33. Streb, H.; Irvine, R.F.; Berridge, M.J.; Shulz, I.: Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature, Lond.306: 67–69 (1983).CrossRefGoogle Scholar
  34. Tsien, R.Y.: A non-disruptive technique for loading calcium buffers and indicators into cells. Nature Lond.290: 527–528 (1981).PubMedCrossRefGoogle Scholar
  35. Volpi, M.; Yassin, R.; Naccache, P.H.; Sha’afi, R.I.: Chemotactic factor causes rapid decrease in phosphatidylinositol 4, 5-bis-phosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils. Biochem. biophys. Res. Commun.112: 951–964 (1983).CrossRefGoogle Scholar
  36. White, J.R.; Huang, C.-K.; Hill, J.; Naccache, P.H.; Becker, E.L.; Sha’afi, R.I.: Effect of PMA and its analogue 4-α-PDD on protein phosphorylation, actin association with cytoskeleton, lysozomal enzyme release and cell aggregation in rabbit neutrophils (submitted for publication 1984).Google Scholar
  37. White, J.R.; Naccache, P.H.; Molski, T.F.P.; Borgeat, P.; Sha’afi, R.I.: Direct demonstration of increased intracellular concentration of free calcium in rabbit and human neutrophils following stimulation by chemotactic factor. Biochem. biophys. Res. Commun.113: 44–50 (1983a).PubMedCrossRefGoogle Scholar
  38. White, J.R.; Naccache, P.H.; Sha’afi, R.I.: Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. J. biol. Chem.258: 14041–14047 (1983b).Google Scholar
  39. Young, J.D.-E.; Unkeless, J.C.; Young, T.M.; Mauro, A.; Cohn, Z.A.: Role for mouse macrophage IgG Fc receptor as ligand-dependent ion channel. Nature, Lond.306: 186–189 (1983).CrossRefGoogle Scholar
  40. Zigmond, S.H.; Sullivan, S.T.; Lauffenburger, D.A.: Kinetic analysis of chemotactic peptide receptor modulation. J. Cell Biol.92: 34–43 (1983).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1984

Authors and Affiliations

  • P. H. Naccache
    • 1
  • R. I. Sha’afi
    • 1
  1. 1.Departments of Pathology and PhysiologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations