Skip to main content
Log in

The effect of acetic acid on fuel ethanol production byZymomonas

  • Session 5 Environmental Biotechnology
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Acetic acid acts to promote uncoupling withZymomonas. At pH 5, 36% of acetic acid is in the uncharged and undissociated form (HAc), which is able to permeate the plasma membrane. The transmembrane ΔpH drives the accumulation of acetic acid, which results in the acidification of the cytoplasm. The consequential increase in maintenance metabolism represents a diversion of energy that would otherwise be available for growth. At pH 5, the growth ofZ. mobilis (ATCC 29191) was 50% inhibited with 8.3 g/L acetic acid (50 mM HAc) and completely inhibited by 11 g/L. Addition of 6 g/L acetic acid caused the glucose-to-ethanol conversion efficiency to decrease from 98 to 90% of theoretical maximum. The growth yield coefficient for glucose was 50% decreased by 2.3 g/L acetic acid (13.5 mM HAc) from 0.036 to 0.018 g cell/g glucose. However, the specific (ethanol) productivity of batch cultures was enhanced by <5 g/L acetic acid (<30 mM HAc). For continuous cultures, the acetic acid sensitivity depends on the growth rate (dilution rate), but an increase in specific productivity can be achieved at proportionately lower concentrations of acetic acid. At a growth rate of 0.112/h, the addition of 1.7 g/L acetic acid to the 5% glucose feed resulted in an increase in specific productivity from 2.68 to 5.87 g ethanol/g cell/h. The uncoupling effect of acetic acid could be beneficial in terms of improving the productivity in closed, continuous fermentations, such as cell recycle or immobilized cell reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D:

dilution rate (h−1)

HAc:

undissociated acetic acid

μ:

specific growth rate (h−1)

Y xls :

growth yield coefficient (g dry wt cells/g glucose)

Yp/s :

product yield (g ethanol/g glucose)

Qp :

volumetric productivity (g ethanol/L/h)

qp :

specific productivity (g ethanol/g cell/h)

References

  1. Wright, J. D. (1988),Chem. Eng. Progress 84, 62–68.

    CAS  Google Scholar 

  2. Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735–753.

    Google Scholar 

  3. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.

    Google Scholar 

  4. Lawford, H. G. (1988),Appl. Biochem. Biotechnol. 17, 203–219.

    Article  CAS  Google Scholar 

  5. Lawford, H. G. (1988),Proc. VIII Int'l Symp. on Alcohol Fuels, Tokyo, November 13–16, Pub. by NEDO, pp. 21–27.

  6. Lawford, H. G. and Ruggiero, A. (1990), inBioenergy, Proc. 7th Cdn. Bioenergy R&D Seminar, Hogan, E., ed., NRC Canada, pp. 401–408.

    Google Scholar 

  7. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982),Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  8. Baratti, J. C. and Bu'Lock, J. D. (1986),Biotechnol. Adv. 4, 95–115.

    Article  CAS  Google Scholar 

  9. Ohta, K., Supanwong, K., and Hayashida, S. (1981),J. Ferment. Technol. 59, 435–439.

    CAS  Google Scholar 

  10. Rodríguez, E. and Callieri, D. A. S. (1986),Biotechnol. Lett. 8, 745–748.

    Article  Google Scholar 

  11. Doelle, M. B., Greenfield, P. F., and Doelle, H. W. (1990),Proc. Biochem. 25(5), 151–156.

    CAS  Google Scholar 

  12. Beavan, M., Zawadzki, B., Droniuk, R., Fein, J., and Lawford, H. G. (1989),Appl. Biochem. Biotechnol. 20/21, 319–326.

    Article  Google Scholar 

  13. Bringer, S., Sahm, H., and Swyzen, W. (1984),Biotechnol. Bioeng. Symp. 14, 311–319.

    CAS  Google Scholar 

  14. Lee, G. M., Kim, C. H., Lee, K. J., Zainal Abidin Mohd. Yusof, Han, M. H., and Rhee, S. K. (1986),J. Ferment. Technol. 64, 293–297.

    Article  CAS  Google Scholar 

  15. Parekh, S. R., Parekh, R. S., and Wayman, M. (1989),Proc. Biochem. 24, 88–91.

    CAS  Google Scholar 

  16. Lawford, H. G. and Rousseau, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 205–216.

    Google Scholar 

  17. Freese, E., Sheu, C. W., and Galliers, E. (1973),Nature 241, 321.

    Article  CAS  Google Scholar 

  18. Booth, I. R. and Kroll, R. G. (1983),Biochem. Soc. Trans. 11, 70–73.

    CAS  Google Scholar 

  19. Smirnova, G. V. and Oktyabr'skii, O. N. (1988),Microbiology (USSR) 57, 446–451.

    Google Scholar 

  20. Repaske, D. R. and Adler, J. (1981),J. Bacteriol. 145, 321–325.

    Google Scholar 

  21. Lawford, H. G. and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol.

  22. Lavers, B. H., Pang, P., MacKenzie, C. R., Lawford, G. R., Pik, J., and Lawford, H. G. (1981), inAdvances in Biotechnology, vol. II, Moo-Young, M., and Robinson, C. W., eds., Pergamon, Canada, pp. 195–200.

    Google Scholar 

  23. Stevnsborg, N. and Lawford, H. G. (1986),Appl. Microbiol. Biotechnol. 25, 106–115.

    CAS  Google Scholar 

  24. Stevnsborg, N. and Lawford, H. G. (1986),Biotechnol. Lett. 8, 181–186.

    Article  CAS  Google Scholar 

  25. Lawford, H. G. and Stevnsborg, N. (1986),Biotechnol. Letts. 8, 345–350.

    Article  CAS  Google Scholar 

  26. Stevnsborg, N., Lawford, H. G., Martin, N., and Beveridge, T. (1986),Appl. Microbiol. Biotechnol. 25, 116–123.

    CAS  Google Scholar 

  27. Lawford, H. G. and Stevnsborg, N. (1987),Biotechnol. Bioeng. Symp. 17, 209–219.

    Google Scholar 

  28. Lawford, H. G., Holloway, P., and Ruggiero, A. (1988),Biotechnol. Lett. 10, 809–814.

    Article  CAS  Google Scholar 

  29. Lawford, H. G. and Ruggiero, A. (1990),Biotechnol. Appl. Biochem. 12, 206–211.

    CAS  Google Scholar 

  30. Swings, J. and De Ley, J. (1977),Bacteriol. Rev. 41, 1–46.

    CAS  Google Scholar 

  31. Prior, B. A., Kilian, S. G., and du Preez, J. C. (1989),Process Biochem. 42, 21–32.

    Google Scholar 

  32. Pampulha, M. E. and Louriero, V. (1989),Biotechnol. Letts. 11, 269–274.

    Article  CAS  Google Scholar 

  33. Booth, I. R. (1985),Microbiol. Rev. 49, 359–378.

    CAS  Google Scholar 

  34. Nicholls, D. G. (1982),Bioenergetics—an Introduction to the Chemiosmotic Theory, Academic Press Inc., Toronto, Canada, pp. 56–58.

    Google Scholar 

  35. Pankova, L. M., Shvinka, J. E., and Beker, M. J. (1988),Appl. Microbiol. Biotechnol. 28, 583–588.

    Article  CAS  Google Scholar 

  36. Verduyn, C., Postma, E., Scheffers, A., and van Dijken, J. P. (1990),J. Gen. Microbiol. 136, 405–412.

    CAS  Google Scholar 

  37. Postma, E., Verduyn, C., Scheffers, W. A., and van Dijken, J. P. (1989),Appl. Environ. Microbiol. 55, 468–477.

    CAS  Google Scholar 

  38. Luli, G. W. and Strohl, W. R. (1990),Appl. Environ. Microbiol. 56, 1004–1011.

    CAS  Google Scholar 

  39. Smirnova, G. V. and Oktyabr'skii, O. N. (1985),Microbiology (USSR) 54, 205–209.

    Google Scholar 

  40. Pirt, S. J. (1975),Principles of Microbe and Cell Cultivation, Blackwell Scientific Publications, London, UK, pp. 66–68.

    Google Scholar 

  41. Belaïch, J. P., Belaïch, A., and Simonpietri, P. (1972),J. Gen. Microbiol. 70, 179–185.

    Google Scholar 

  42. Lazdunski, A. and Belaïch, J. P. (1972),J. Gen. Microbiol. 70, 187–197.

    CAS  Google Scholar 

  43. Rogers, P. L. and Tribe, D. E. (1983), United States Patent 4,403,034.

  44. Cromie, S. and Doelle, H. W. (1980),Biotechnol. Lett. 2, 357–362.

    Article  CAS  Google Scholar 

  45. Maiorella, B. L., Blanch, H. W., and Wilke, C. R. (1983),Biotechnol. Bioeng. 25, 103–121.

    Article  CAS  Google Scholar 

  46. Vega, J. L., Claussen, E. C., and Gaddy, J. L. (1987),Biotechnol. Bioeng. 29, 429–435.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. The effect of acetic acid on fuel ethanol production byZymomonas . Appl Biochem Biotechnol 39, 687–699 (1993). https://doi.org/10.1007/BF02919028

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919028

Index Entries

Navigation