Biodegradation of chlorinated aliphatics and aromatic compounds in total-recycle expanded-bed biofilm reactors

  • V. M. Korde
  • T. J. Phelps
  • P. R. Bienkowski
  • D. C. White
Session 5 Environmental Biotechnology


Ground-water contamination by chlorinated aliphatic compounds is a major cause for concern because of their toxicity. This study examined the biodegradation of trichloroethylene and aromatic compounds by microbial consortia enriched from contaminated subsurface sediments. The consortia were capable of utilizing methane and propane as sources of carbon and energy. Two continuously recycled expanded-bed bioreactors were inoculated with (1) the subsurface consortium, and (2)P. fluorescence, P. putida (strains pRB1401 and pWWO), andM. trichosporium OB3b. An uninoculated reactor containing 0.2% sodium azide and 0.5% formalin served as the control. Methane (5% v/v) and propane (3% v/v) were maintained by batch feeding through the course of the experiment. Greater than 97% degradation of trichloroethylene was observed over a period of 12 d. More than 99% of benzene, toluene, and xylene were degraded within the first 7 d. Dissolved oxygen levels were measured and found to be in the range 4.9–6.5 mg/L throughout the experiments.

Index Entries

Mixed-waste biodegradation bioreactors chlorinated aliphatics atomatics bioremediation 


  1. 1.
    Hirschhorn, J. S. (1985),Superfund Strategy. OTA-ITE-252, Office of Technology Assessment, Washington, D.C.,Google Scholar
  2. 2.
    Fliermans, C. B., Phelps, T. J., Ringelberg, D., Mikell, A. T., and White, D. C. (1988),Appl. Environ. Microbiol. 54, 1709.Google Scholar
  3. 3.
    Phelps, T. J., Ringelberg, D., Hedrick, D., Davis, J., Fliermans, C. B., and White, D. C. (1988),Geomicrobiol. J. 6, 157.Google Scholar
  4. 4.
    U. S. DOE. Evaluation of mid-to-long term basic research for environmental restoration. DOE/ER-0419; US Government Printing Office, Washington, D.C., September 1989.Google Scholar
  5. 5.
    Hirschhorn, J. S. (1986),Serious Reduction of Hazardous Waster—Summary. OTA-ITE-318. Office of Technology Assessment, Washington, D.C.Google Scholar
  6. 6.
    Little, C. D., Palumbo, A. V., Herbes, S. E., Lidstrom, M. E., Tyndall, R. L., and Gilmer, P. J. (1988),Appl. Environ. Microbiol. 54, 951.Google Scholar
  7. 7.
    Wilson, B. H. and Wilson, B. H. (1985),Appl. Environ. Microbiol. 49, 242.Google Scholar
  8. 8.
    Nelson, M. J. K., Montgomery, S. O., Mahaffey, W. R., and Pritchard, P. H. (1987),Appl. Environ. Microbiol. 53, 949.Google Scholar
  9. 9.
    Wackett, L. P. and Gibson, D. T. (1988),Appl. Environ. Microbiol. 54, 1703.Google Scholar
  10. 10.
    Henson, J. M., Yates, M. V., Cochran, J. W., and Shackleford, D. L. (1988),FEMS Microbiol. Ecol. 53, 193.CrossRefGoogle Scholar
  11. 11.
    Niedzielski, J. J., Schram, R. M., Phelps, T. J., Herbes, S. E., and White, D. C. (1989),J. Microbiol. Methods 10, 215.CrossRefGoogle Scholar
  12. 12.
    Phelps, T. J., Niedzielski, J. J., Schram, R. M., Herbes, S. E., and White, D. C. (1990),Appl. Environ. Microbiol. 56, 1702.Google Scholar
  13. 13.
    Strandberg, G. W., Donaldson, T. L., and Farr, L. L. (1989),Environ. Sci. Technol. 23, 1422.CrossRefGoogle Scholar
  14. 14.
    Phelps, T. J., Niedzielski, J. J., Malachowski, K. J., Schram, R. M., Herbes, S. E., and White, D. C. (1991),Environ. Sci. Technol. 25, 1461.CrossRefGoogle Scholar
  15. 15.
    Atlas, R. M. and Bartha, R. (1987), inMicrobial Ecology, 2nd ed. Benjamin/Cummings Publishing Co. Inc., New York, pp. 403–438.Google Scholar
  16. 16.
    Bartha, R. (1986),Microbial Ecol. 12, 155.CrossRefGoogle Scholar
  17. 17.
    Dagley, S. (1971),Adv. Microb. Physiol. 6, 1.CrossRefGoogle Scholar
  18. 18.
    Gibson, D. T., Koch, J. R., and Kallio, R. E. (1968),Biochemistry,7, 2653.CrossRefGoogle Scholar
  19. 19.
    Gibson, D. T. and Subramanian, V. (1984), inMicrobial Degradation of Organic Compounds, Gibson, D. T., ed., Marcel Dekker, Inc., New York, pp. 181–252.Google Scholar
  20. 20.
    Hou, C. T. (1982), inMicrobial Transformation, of Bioactive Compounds vol. 1, Rosazza, J. P., ed. CRC Press, Boca Raton, FL, pp. 81–107.Google Scholar
  21. 21.
    Marr, E. K. and Stone, R. W. (1961),Bacteriol. 81, 425.Google Scholar
  22. 22.
    Ribbons, D. W. and Eaton, R. W. (1982), inBiodegradation of Detoxification of Environmental Pollutants. Chakrabarty, A. M., ed. CRC Press, Boca Raton, FL, pp. 59–84.Google Scholar
  23. 23.
    Cornish, A., Nicholls, K. M., Scott, D., Hunter, B. K., Aston, W. J., Higgins, I. J., and Sanders, J. K. M. (1984),J. Gen. Microbiol. 130, 2565.Google Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • V. M. Korde
    • 1
  • T. J. Phelps
    • 2
    • 3
  • P. R. Bienkowski
    • 1
    • 2
  • D. C. White
    • 1
    • 3
  1. 1.Center for Environmental BiotechnologyUniversity of TennesseeKnoxville
  2. 2.Department of Chemical EngineeringUniversity of TennesseeKnoxville
  3. 3.Oak Ridge National LaboratoryEnvironmental Sciences DivisionOak Ridge

Personalised recommendations