Effect of sugar consumption on ethanol fermentation in a tower fermentor packed with self-aggregating yeast

Mathematical modeling and bed height prediction
  • C. S. Chen
  • E. Chan
  • C. S. Gong
  • L. F. Chen
Session 4 Bioengineering Research


A strain of self-aggregatingSaccharomyces uvarum was cultivated in a 6-L tower fermentor for continuous ethanol fermentation. Large aggregates (2–3 mm) were formed and packed in the column. The height of this packed region depends on the sugar concentration. As sugar concentrations were reduced to below a critical value, most of the large aggregates disintegrated into smaller aggregates (0.1–0.2 mm). Above the packed bed region, small aggregates and small amount of large aggregates were fluidized and formed a well mixed region by the liquid medium and the produced carbon dioxide. A mathematical model of a plug flow with consideration of axial dispersion and a Continuous Stirred Tank Reactor (CSTR) in series is proposed to describe such fermentor. The concentration profile of sugar can be simulated by this model. The height of the packed bed region can then be estimated based on the predetermined critical sugar concentration. Final ethanol concentration and the productivity of such fermentor can also be predicted.

Index Entries

Yeast aggregates ethanol fermentation tower fermentor model 


  1. 1.
    Admassu, W., and Korus, R. (1985),The Chem. Eng. J. 31, 1.CrossRefGoogle Scholar
  2. 2.
    Bu'lock, J. D., Comberbach, D. M., and Ghommich, C. (1984),Chem. Eng. J. 29, 9.CrossRefGoogle Scholar
  3. 3.
    Hamamci, H., and Ryn, D. Y. (1988),Appl. Microbiol. Biotechnol. 28, 515.CrossRefGoogle Scholar
  4. 4.
    Jones, S. T., Korus, R. A., Admassu, W., and Heimsch, R. C. (1984),Biotech. Bioeng. 26, 742.CrossRefGoogle Scholar
  5. 5.
    Prince, I. G. and Bardord, J. P. (1982),Biotech. Lett. 4(7), 469.CrossRefGoogle Scholar
  6. 6.
    Levenspiel, O. (1972),Chemical Reaction Engineering, 2nd ed., Wiley, NY, Ch. 6.Google Scholar
  7. 7.
    Chen, C. S., Chan, E., Gong, C. S., and Chen, L. F. (1991),Appl. Biochem. Biotech. 28/29, 719.Google Scholar
  8. 8.
    Chen, L. F. and Gong, C. S. (1985),Biotechnol. Bioeng. 14, 257.Google Scholar
  9. 9.
    Chen, L. F. and Gong, C. S. (1986),Appl. Microbiol. Biotechnol. 25, 208.CrossRefGoogle Scholar
  10. 10.
    Kida, K., Asano, S., Yamadaki, M., Iwasaki, K., Yamaguchi, T., and Sonoda, Y. (1990),J. Ferment. Bioeng. 69(1), 39.CrossRefGoogle Scholar
  11. 11.
    Peterson, J. N. and Davison, B. H. (1991),Appl. Biochem. Biotech. 28/29, 685.CrossRefGoogle Scholar
  12. 12.
    Ascher, U., Christiansen, J., and Russel, R. D. (1979),Math. Comput. 33, 659.CrossRefGoogle Scholar
  13. 13.
    Ascher, U., Christiansen, J., and Russel, R. D. (1981),ACM TOMS 7, 209.CrossRefGoogle Scholar
  14. 14.
    Mersmann, A. (1978),Ger. Chem. Eng. 1, 1.Google Scholar
  15. 15.
    Luong, J. H. T. (1985),Biotechnol. Bioeng. 27, 280.CrossRefGoogle Scholar
  16. 16.
    Lee, K. J. and Rogers, P. L. (1983),Chem. Eng. J. 27, 31.CrossRefGoogle Scholar
  17. 17.
    Leonard, R. H. and Hainy, G. J. (1945)Ind. Eng. Chem. 37, 390.CrossRefGoogle Scholar
  18. 18.
    Maiorella, B. L., Blanch, H. W., and Wilke, C. R. (1984),Biotech. Bioeng. 26, 1155.CrossRefGoogle Scholar
  19. 19.
    Begovich, J. M. and Watson, J. S. (1978),Fluidization, Davidson, J. F. and Keairns, D. L., eds., Cambridge University Press, Cambridge, UK, pp. 190–195.Google Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • C. S. Chen
    • 1
  • E. Chan
    • 1
  • C. S. Gong
    • 1
  • L. F. Chen
    • 1
  1. 1.Department of Food SciencePurdue UniversityWest Lafayette

Personalised recommendations