Skip to main content
Log in

Continuous production of acetaldehyde by immobilized yeast within situ product trapping

Comparison of alcohol dehydrogenase and alcohol oxidase routes

  • Session 4 Bioengineering Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two alternative enzymatic routes to continuous biological acetaldehyde production from ethanol by immobilized yeast were compared: ADH ofCandida utilis and AOX ofCandida boidinii. The ADH route, performed by immobilized cells in the presence of tris buffer continuously trapping the acetaldehyde formed, was found superior to the AOX route. It exhibited significantly higher operational stability in both batchwise or continuous operation in fluidized bed reactor. The ADH system exhibited a stable acetaldehyde production level for 5 d, followed by gradual decrease in activity, which could be readily fully regeneratedin situ by flushing with growth medium. Efficient continuous product trapping by tris buffer was essential to maintain continuous operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Byrne, B. and Sherman, G. (1984),Food Technology 38, 57–61.

    Google Scholar 

  2. Welsh, F. W., Murray, W. D., and Williams, R. E. (1989),CRC. Critical Reviews in Biotechnology 9, 105–169.

    Article  CAS  Google Scholar 

  3. Berger, R. G., Drawert, F., and Hedrick, S. (1988), in “Bioflavor '87”, Schreier, P., ed., W. de Gruyter, pp. 415–433.

  4. Gatfield, I. L., (1986), inBiogeneration of Aromas, Parliment, T. H. and Croteau, R., eds.,ACS Symposium Series,317, 310–321.

  5. Duff, S. J. B. and Murray, W. D. (1988),Ann. NY Acad. Sci. 542, 428–433.

    Article  CAS  Google Scholar 

  6. Duff, S. J. B., Murray, W. D., and Overland, R. P. (1989),Enzyme Microb. Technol. 11, 770–775.

    Article  CAS  Google Scholar 

  7. Ingram, L. O. and Buttke, T. M. (1984),Adv. Microb. Physiol. 25, 254–300.

    Google Scholar 

  8. Nelles, L. P., Arnold, J. A., and William, D. S. (1990),Biotechnol. Bioeng. 36, 834–838.

    Article  CAS  Google Scholar 

  9. Kierstan, M. (1982),Biotechnol. Bioeng. 24, 2275–2277.

    Article  CAS  Google Scholar 

  10. Armstrong, D. W., Martin, S. M., and Yamazaki, H. (1984),Biotechnol. Lett. 6, 183–188.

    Article  CAS  Google Scholar 

  11. Shabtai, Y., Chaimovitz, S., Freeman, A., Katchalski-Katzir, E., Linder, C., Nemes, M., Perry, M., and Kedem, O. (1991),Biotechnol. Bioeng. 38, 869–876.

    Article  CAS  Google Scholar 

  12. Silbiger, E. and Freeman, A. (1991),Enzyme Microb. Technol. 13, 869–872.

    Article  CAS  Google Scholar 

  13. Davison, B. H. and Thompson, J. E. (1982),App. Biochem. Biotechnol. 34/35, 431–439.

    Google Scholar 

  14. Friedl, A., Quenshi, N., and Maddox, S. (1991),Biotech. Bioeng. 38, 518–527.

    Article  CAS  Google Scholar 

  15. Groot, W. J., den Reyer, M. C. H., Baart de la Faille, T., van der. Lans, R. G. J. M., and Luyben, K. Ch. A. M. (1991),Chem. Eng. J. 46, B1-B10.

    Article  CAS  Google Scholar 

  16. Yabanavar, V. M. and Wang, D. I. C. (1991),Biotech. Bioeng. 37, 1095–1100.

    Article  Google Scholar 

  17. Sakai, Y. and Tani, Y. (1987),Agric. Biol. Chem. 51, 2617–2620.

    CAS  Google Scholar 

  18. Duff, S. J. B. and Murray, W. D. (1988),Biotech. Bioeng. 31, 790–795.

    Article  CAS  Google Scholar 

  19. Duff, S. J. B. and Murray, W. D. (1990),Process Biochem. 25, 40–42.

    Google Scholar 

  20. Dziezak, J. D. (1987),Food Technology 41, 104–125.

    Google Scholar 

  21. Freeman, A. (1987),Methods Enzymol. 135, 216–222.

    CAS  Google Scholar 

  22. Sahm, H., Scutte, H., and Kula, M. R. (1982),Methods Enzymol. 89, 424–428.

    Article  CAS  Google Scholar 

  23. Hill, D. J., Jenkins, R. O., Cartledge, T. G., and Lloyd, D. (1986),Biochem. J. 238, 255–261.

    CAS  Google Scholar 

  24. Silbiger, E. and Freeman, A. (1987),Biotech. Bioeng. 30, 675–680.

    Article  CAS  Google Scholar 

  25. Abramov, S., Aharonowitz, Y., Harnik, M., Lamed, R., and Freeman, A. (1990),Enzyme Microb. Technol. 12, 982–988.

    Article  CAS  Google Scholar 

  26. Vogel, A. I. (1958), inElementary Practical Organic Chemistry, Longman, Green and Co., London, p. 379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shachar-Nishri, Y., Freeman, A. Continuous production of acetaldehyde by immobilized yeast within situ product trapping. Appl Biochem Biotechnol 39, 387–399 (1993). https://doi.org/10.1007/BF02919005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919005

Index Entries

Navigation