Skip to main content
Log in

Yield and quality of cyanobacteria

Spirulina maxima in continuous culture in response to light intensity

  • Session 3 Applied Biological Research II
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

CynobacteriaSpirulina maxima was evaluated in an effort to increase the growth rate, biomass yield in continuous cultures. The light efficiency was dependent on the light energy absorbed by the cultures. Cultures with optical densities of 0.48 and 0.49 were considered the ones in which most of the incident light energy was converted to chemical energy (mass). Low-light experiments (30 μEm−2s−1) were efficient in terms of mass output and absorbed light energy (calorie). Low-light cultures did not require high calories to produce the same yield as high-light ones (100 μEm−2s−1). In addition, the total protein percentage was higher in low-light cultures, whereas the total carbohydrate percentage was higher in high-light cultures. In conclusion,Spirulina maxima responds the same way as many other alga and cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grobbelarr, J. U. (1988),S. Afric. J. Sci. 84, 4–5.

    Google Scholar 

  2. de la Noue, J. and de Pauw, N. (1988),Biotech. Adv. 6, 725–770.

    Article  Google Scholar 

  3. Iwamoto, H. (1989), inBiomass Handbook, Kitani, O. and Hall, C. W. eds. Gordon and Breach Science Publications, pp. 213–218.

  4. Richmond, A. (1987), inMiroalgal Biotechnology, Borowitzka, M. and Borowitzka, L. eds., Cambridge Univ. Press, pp. 85–121.

  5. Becker, E. W. and Venkataraman, L. V. (1984),Biomass 4, 105–125.

    Article  CAS  Google Scholar 

  6. Richmond, A., Karg, S., Boussiba, S. (1982),Plant and Cell Physiol. 23, 1411–1417.

    CAS  Google Scholar 

  7. Aiba, S. and Ogawa, T. (1977),J. Gen. Microbiol. 102, 179–182.

    Google Scholar 

  8. Iehana, M. (1983),J. Ferm. Technol. 61, 457–466.

    CAS  Google Scholar 

  9. Vonshak, A., Abeliovich, A., Boussiba, S., and Richmond, A. (1982),Biomass. 2, 175–185.

    Article  Google Scholar 

  10. MacElroy, R. D. and Bredt, J. (1985), inCELSS NASA CP-2378, MacElroy, R. C., Smeroff, D. T., Klein, H. P., eds., pp. 1–9.

  11. Tadros, M. G. (1990), inCELSS 1989, MacElroy R. D., ed., NASA and Tech. Memo 102277 pp. 217–243.

  12. Pirt, S. J., Lee, Y. K., Pirt, M. W., Balyusi, H. H. W., and Bazin, M. J. (1983),J. Chem. Tech. Biotechnol. 33B, 35–58.

    CAS  Google Scholar 

  13. Pirt, S. J., Lee, Y. K., Richmond, A. and Pirt, M. W. (1980),J. Chem. Tech. Biotechnol. 30, 25–34.

    CAS  Google Scholar 

  14. Morris, I. (1981),Can. Bull. Fish. Aquat. Sci. 210, 83–102.

    Google Scholar 

  15. Collins, C. D. and Boylen, C. W. (1982),J. Phycol. 18, 206–211.

    Article  Google Scholar 

  16. Hitchcock, G. L. (1980),Mar. Biol. 57, 271–278.

    Article  CAS  Google Scholar 

  17. Goldman, J. C. and Dennett, M. R. (1983),Mar. Ecol. Prog. Ser. 15, 169–180.

    Article  Google Scholar 

  18. Falkowski, P. G. (1984),J. Plankton Res. 6, 295–307.

    Article  Google Scholar 

  19. Fabregas, J., Herrero, C., Abalde, J., Cabezas, B. (1986),J. Industr. Microbiol. 1, 251–257.

    Article  CAS  Google Scholar 

  20. Konopka, A., Kromkamp, J., and Mur, L. R. (1987),J. Phycol. 23, 70–78.

    CAS  Google Scholar 

  21. Tadros, M. G., Johansen, J. R. (1988),J. Phycol. 24, 445–452.

    Google Scholar 

  22. Kochert, G. (1978),Physiological and Biochemical Methods, Cambridge University Press, London, pp. 189–195.

    Google Scholar 

  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. B24.

  24. Blight, E. G., Dyer, W. J. (1959),Can. J. Biochem. Physiol. 37, 911–917.

    Google Scholar 

  25. Radmer, R. and Kok, B. (1977), inEncyclopedia of Plant Physiology, vol. 5, Trebst and Avron, eds., Springer-Verlag, Berlin, p. 125.

    Google Scholar 

  26. Osborne, B. A. and Raven, J. A. (1986),Biol. Rev. 61, 1–61.

    Article  CAS  Google Scholar 

  27. Vonshak, A., Guy, R., and Guy, M. (1988),Archiv. Microbiol. 150, 445–420.

    Google Scholar 

  28. Van Liere, L. and Mur, L. R. (1979),J. Gen. Microbiol. 115, 153–160.

    Google Scholar 

  29. Zevenboom, W. and Mur, L. R. (1984),Arch. Microbiol. 139, 232–239.

    Article  CAS  Google Scholar 

  30. Gibson, C. E. and Foy, R. H. (1983),Br. Phycol. J. 18, 39–45.

    Article  Google Scholar 

  31. Post, A. F., Loogman, J. G., and Mur, L. R. (1986),J. Gen. Microbiol. 13, 2129–2136.

    Google Scholar 

  32. Kromkamp, J. C. and Mur, L. R. (1984),FEMS Microbiol. Lett. 25, 105–109.

    Article  CAS  Google Scholar 

  33. Fontes, A. G., Moreno, J., and Vargas, M. A. (1989),Biotechnol. Bioeng. 34, 819–824.

    Article  CAS  Google Scholar 

  34. Torzilla, G., Sacchi, A. R., Materassi, and Richmond, A. (1991),J. Appl. Phycol. 3, 103–109.

    Article  Google Scholar 

  35. Falkowski, P. G., Owens, T. G., Ley, A. C., and Mauzerall, D. C. (1981),Pl. Physiol. Lancaster 68, 969–973.

    CAS  Google Scholar 

  36. Taub, F. B. (1980), Elsevier/North-Holland and Biomedical-Press, pp. 707–721.

  37. Myers, J. (1957), inEncyclopedia of Chemical Technology, Kirk, R. and Othmer, D. eds., Interscience, New York, p. 33.

    Google Scholar 

  38. Zarrouk, C. (1966), Influence de divers facteurs physiques sur la crossance et al photosynthesis. Thesis, University of Paris (France).

    Google Scholar 

  39. Matsunaga, T., Nakamura, N., Tsuzakis, N., and Takeda, H. (1988),Apl. Microbiol. Biotechnol. 28, 373–376.

    Article  CAS  Google Scholar 

  40. Graves, D. A. and Greenbaum, E. (1989),Plant Physiol. 90, 246–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadros, M.G., Smith, W., Joseph, B. et al. Yield and quality of cyanobacteria. Appl Biochem Biotechnol 39, 337–347 (1993). https://doi.org/10.1007/BF02919001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919001

Index Entries

Navigation