Skip to main content
Log in

Anaerobic bioconversion of municipal solid wastes

Effects of total solids levels on microbial numbers and hydrolytic enzyme activities

  • Session 1 Thermal, Chemical, and Biological Processing
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The anaerobic bioconversion of municipal solid wastes (MSW) produces both a valuable fuel product (methane) and a residue useful as a soil amendment. The application of high-solids fermentation technology offers improved economics over the more traditional low-solids fermentation systems. An important benefit of the high-solids process is the reduction in process water, which results in smaller fermentation reactors, and thus lower capital and operating costs. However, the anaerobic bioconversion process appears to be more efficient at high-solids as compared to low-solids levels. To understand the effects of solids levels on the anaerobic bioconversion process more thoroughly, representative high-solids and low-solids anaerobic reactor systems processing identical MSW feedstocks are compared with respect to fermentation performance, total microbial cell number, and important hydrolytic enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schwartz, S. C. and Brunner, C. R. (1983),Energy and Resource Recovery from Waste, Noyes Data Corp., New Jersey.

    Google Scholar 

  2. US Environmental Protection Agency (1974),Third Report to Congress, Pub. No. SW-161, Washington, D.C.

    Google Scholar 

  3. Boone, D. R. (1982),Appl. Environ. Microbiol. 43, 57.

    CAS  Google Scholar 

  4. Noike, T., Endo, G., Chang, J.-E., Yaguchi, J.-I., Matsumoto, J.-I. (1985),Biotechnol. Bioeng. 27, 1482.

    Article  CAS  Google Scholar 

  5. Biljetina, R., Srivastava, V. J., Fannin, K. F., Janulis, J. A., and Henry, M. P. (1987),Annual Report for Walt Disney Imagineering, Contract No. 9MP-86-1.

  6. Stenstrom, M. K., Ng, A. S., Bhunia, P. K., and Abramson S. D. (1983),J. Environ. Eng. 109, 1148.

    CAS  Google Scholar 

  7. Verachtert, H., Ramasamy, K., Meyers, M., and Bevers, J. (1982),J. Appl. Bacteriol. 52, 185.

    CAS  Google Scholar 

  8. Vinzant, T. B., Adney, W. S., Grohmann, K., and Rivard, C. J. (1990),Appl. Biochem. Biotech. 24/25, 765.

    Article  Google Scholar 

  9. Gujer, W. and Zehnder, A. J. B. (1983),Wat. Sci. Tech. 15, 127.

    CAS  Google Scholar 

  10. Gijzen, H. J., Zwart, K. B., Teunissen, M. J., and Vogels, G. D. (1988),Biotech. Bioeng. 32, 749.

    Article  CAS  Google Scholar 

  11. Clanet, M. and Durand, H. (1988),Biotech. Bioeng. 32, 930.

    Article  CAS  Google Scholar 

  12. Adney, W. S., Rivard, C. J., Grohmann, K., and Himmel, M. E. (1989),Biotech. Apl. Biochem. 11, 387.

    CAS  Google Scholar 

  13. Rivard, C. J., Adney, W. S., and Himmel, M. E. (1991),Enzymes in Biomass Conversion, Leatham, G. and Himmel, M. E., eds., American Chemical Society Books, Washington, D.C.

    Google Scholar 

  14. Rivard, C. J., Vinzant, T. B., Adney, W. S., Grohmann, K., and Himmel, M. E. (1990),Biomass 23, 201.

    Article  CAS  Google Scholar 

  15. Owen, W. F., Stuckey, D. C., Healy, J. B., Young, L. Y., and McCarty, P. L. (1979),Water Res. 13, 485.

    Article  CAS  Google Scholar 

  16. Rivard, C. J., Bordeaux, F. M., Henson, J. M., and Smith, P. H. (1987),Appl. Biochem. and Biotech. 17, 245.

    Article  Google Scholar 

  17. Henson, J. M., Bordeaux, F. M., Rivard, C. J., and Smith, P. H. (1986),Appl. Environ. Microbiol. 51, 288.

    CAS  Google Scholar 

  18. Rivard, C. J., Himmel, M. E., Vinzant, T. B., Adney, W. S., Wyman, C. E., and Grohmann, K. (1989),Appl. Biochem. and Biotech. 20/21, 461.

    Google Scholar 

  19. Greenberg, A. E., Conners, J. J., and Jenkins, D., eds. (1981), inStandard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C.

    Google Scholar 

  20. Goering, H. K. and Van Soest, P. J. (1970),US Dept. of Agriculture Handbook #379.

  21. Rivard, C. J., Himmel, M. E., and Grohmann, K. (1985),Biotech. Bioeng. Symp. 15, 375.

    Google Scholar 

  22. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., and Wolfe, R. S. (1979),Microbiol. Rev. 43, 260.

    CAS  Google Scholar 

  23. Hungate, R. E. (1969), inMethods in Microbiology, Norris, J. R., and Ribbons, D. W., eds., Academic, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivard, C.J., Nagle, N.J., Adney, W.S. et al. Anaerobic bioconversion of municipal solid wastes. Appl Biochem Biotechnol 39, 107–117 (1993). https://doi.org/10.1007/BF02918981

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918981

Index Entries

Navigation