Advertisement

Biotechnology for production of fuels, chemicals, and materials from biomass

  • Charles E. Wyman
  • Barbara J. Goodman
Session 1 Thermal, Chemical, and Biological Processing

Abstract

Biological systems can convert renewable resources, including lignocellulosic biomass, starch crops, and carbon dioxide, into fuels, chemicals, and materials. Ethanol and other products are now derived from starch crops, such as corn. Enzyme-based technology is under development for conversion of lignocellulosic biomass (e.g., wood, grasses, and agricultural and municipal wastes) into fuel ethanol. The simultaneous saccharification and fermentation (SSF) process is employed to convert the cellulose fraction into ethanol at improved rates, higher yields, and higher ethanol concentrations than using sequential processing through careful selection of improved cellulase enzymes and fermentative microorganisms. Medium-BTU gas can be derived from lignocellulosic biomass by anaerobic digestion and cleaned up to a pipeline-quality gas. A high-solids fermenter achieves higher gas generation rates than conventional devices and promises to help make such gas economical. An extensive collection of more than 500 productive strains of microalgae has been established to produce lipid oils for diesel fuel and other compounds from carbon dioxide. Acetyl CoA carboxylase (ACC) has been shown to be a key enzyme in lipid oil synthesis, and genetic engineering approaches are being applied to enhance the rates and yields of product formation. In addition to fuels., a biorefinery could produce a wide range of chemicals and materials through microbial conversion of renewable resources, and technology is being developed for production of chemicals and materials from biomass.

Index Entries

Ethanol methane biodiesel chemicals biomass 

References

  1. 1.
    Energy Information Administration (March 1992), DOE/EIA-0035 (92/03). Energy Information Administration, Washington, D.C.Google Scholar
  2. 2.
    Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991),Science 251, 1318–1323.CrossRefGoogle Scholar
  3. 3.
    Watson, S. A. and Ramstad, P., eds. (1987),Corn: Chemistry and Technology, American Association of Cereal Chemists, St. Paul, MN.Google Scholar
  4. 4.
    Lewis, S. M. and Grimes, W. M. (1988)Economic Time Series Analysis of the Fuel Alcohol Industry, Finnsugar Bioproducts, Inc., Schaumburg, IL.Google Scholar
  5. 5.
    US Department of Agriculture. (1987), National Advisory Panel on Cost-Effectiveness of Fuel Ethanol Production. Fuel Ethanol Cost-Effectiveness Study, US Department of Agriculture, Washington, D.C.Google Scholar
  6. 6.
    Livo, K.B. and Gallagher, J. (1989), Environmental Influence of Oxygenates, presented at the American Institute of Chemical Engineers National Meeting, San Francisco CA.Google Scholar
  7. 7.
    Johnson, L. (1989), Vehicle Performance and Air Quality Issues of 10% Ethanol Blends, 24th Intersociety Energy Conversion Engineering Conference, Washington, D.C.Google Scholar
  8. 8.
    Anderson, E. (1988),Chem. Eng. News 65:43, 11.Google Scholar
  9. 9.
    Pahl, R. H. (1988), Motor Fuel and Automotive Technology Development Providing Cleaner Air for All Americans, Testimony before Joint Congressional Briefing, Washington, D.C.Google Scholar
  10. 10.
    Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735.Google Scholar
  11. 11.
    Chemical Economic Handbook, SRI International, October 1991.Google Scholar
  12. 12.
    Commodity Research Bureau (1991),1991 CRB Commodity Year Book, Commodity Research Bureau, New York.Google Scholar
  13. 13.
    Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992),Appl. Biochem. Biotechnol. 34/35, 639.Google Scholar
  14. 14.
    Wright, J. D., Wyman, C. E., and Grohmann, K. (1988),Appl. Biochem. Biotech. 17/18, 75.Google Scholar
  15. 15.
    Spindler, D. D., Wyman, C. E., and Grohmann, K. (1991),Appl. Biochem. Biotechnol. 28/29, 773.Google Scholar
  16. 16.
    Spindler, D. D., Wyman, C. E., and Grohmann, K. (1990),Appl. Biochem. Biotechnol. 24/25, 275.Google Scholar
  17. 17.
    Spindler, D. D., Wyman, C. E., Grohmann, K., and Mohagheghi, A. (1989),Appl. Biochem. Biotechnol. 20/21, 529.Google Scholar
  18. 18.
    Wyman, C. E., Spindler, D. D., Grohmann, K., and Lastick, S. (1986),Biotechnol. Bioeng. 17, 221.Google Scholar
  19. 19.
    Spindler, D. D., Wyman, C. E., Mohagheghi, A., and Grohmann, K. (1988),Appl. Biochem. Biotechnol. 17/18, 279.CrossRefGoogle Scholar
  20. 20.
    Lastick, S., Spindler, D., Terrell, S., and Grohmann, K. (1984),Biotech. 84, 277.Google Scholar
  21. 21.
    Chaing, L. C., Hsiao, H. Y., Ueng, P. P., Chen, L. F., and Tsao, G. T. (1981),Biotechnol. Bioeng. Symp. 11, 263.Google Scholar
  22. 22.
    Lastick, S. M., Mohagheghi, A., Tucker, M. P., and Grohmann, K. (1990),Appl. Biochem. Biotechnol. 24/25, 431.Google Scholar
  23. 23.
    Ingram L. O. and Conway, T. (1988),Appl. Environ. Microbiol. 54(2), 397.Google Scholar
  24. 24.
    Wood, B. E. and Ingram, L. O. (1992),Appl. Environ. Microbiol. 58(7), 2103.Google Scholar
  25. 25.
    Jeffries, T. W. (1989), inEnergy Applications of Biomass, Lowenstein, M. S., ed., Elsevier Applied Science, New York, p. 231.Google Scholar
  26. 26.
    Wright, J. D. (1988)Energy Progress 8:2., 71.Google Scholar
  27. 27.
    Chem Systems (1990),Technical and Economic Evaluations: Wood to Ethanol Process, Chem Systems, Tarrytown, NY.Google Scholar
  28. 28.
    Rivard, C., Himmel, M., Vinzant T., Adney, W., Wyman, C. E., and Grohmann, K. (1989),Appl. Biochem. Biotechnol. 20/21, 461.Google Scholar
  29. 29.
    Legrand, R. and Todd, T. (1990),Systems Analysis of Municipal Solid Waste Biogasification, prepared for the Solar Energy Research Institute, Reynolds, Smith and Hills, Inc., Jacksonville, FL.Google Scholar
  30. 30.
    Chynoweth, D., Fannin, K., Jerger, D., Srivastava, V., and Biljetina, R. (1984)Anaerobic Digestion of Biomass: Status Summary and R&D Needs/1983. Prepared for the Gas Research Institute, Institute of Gas Technology IIT Center, Chicago, IL.Google Scholar
  31. 31.
    Neenan, B., Feinberg, D., Hill, A., McIntosh, R. and Terry, K. (1986),Fuels from Microalgae: Technology Status, Potential, and Research Requirements, Solar Energy Research Institute, Golden, CO.Google Scholar
  32. 32.
    American Solar Energy Society (1992),Economics of Solar Energy Technologies, American Solar Energy Society Boulder, CO. draft.Google Scholar
  33. 33.
    Roessler, P. (1988),Arch. Biochem. Biophys. 267, 521.CrossRefGoogle Scholar
  34. 34.
    Roessler, P. (1990),J. Phycology 26, 393.CrossRefGoogle Scholar
  35. 35.
    Chelf, P., Brown, L., and Wyman, C. E. (1991), Aquatic Biomass Resources and Carbon Dioxide Trapping, 1990 Conference on Biomass for Utility Applications, Oct. 23–25, Electric Power Research Institute, Tampa, FL.Google Scholar
  36. 36.
    Energy Information Administration (1991), Manufacturing Energy Consumption Survey: Consumption of Energy 1988, DOE/EIA-0512(88). Energy Information Administration, Office of Energy Markets and End Use, Washington, D.C.Google Scholar
  37. 37.
    “Facts and Figures for the Chemical Industry” (1992),C&EN, June 29; pp. 34–75.Google Scholar
  38. 38.
    United States International Trade Commission (1991), Synthetic Organic Chemicals: United States Production and Sales, 1990, USITC Publication 2470. Washington, D.C.Google Scholar
  39. 39.
    Leeper, S. and Andrews, G. (1991),Appl. Biochem. Biotechnol. 28/29, 499.CrossRefGoogle Scholar
  40. 40.
    Andrews, G. P. (1989),Biotechnol. Bioeng. 33:3, 256.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Charles E. Wyman
    • 1
  • Barbara J. Goodman
    • 1
  1. 1.Alternative Fuels DivisionNational Renewable Energy Laboratory (NREL)Golden

Personalised recommendations