Hydrotechnical Construction

, Volume 32, Issue 5, pp 238–245 | Cite as

Problem of constructing conservative finite-difference schemes for differential equations of nonsteady flow in a nonprismatic channel

  • S. Ya. Shkol’nikov
Science: Theory, Experiment, And Practice


Local Resistance Lower Pool Channel Shape Venant Equation Channel Hydraulics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. T. Gladyshev, “Problem of the dissociation of initial discontinuities in open channels,” Izv. Vuzov, No. 4 (1968).Google Scholar
  2. 2.
    A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).Google Scholar
  3. 3.
    J. A. Kuntz, F. M. Holly, and A. Vervay, Numerical Methods in Problems of River Hydraulics [Russian translation], Énergoatomizdat, Moscow (1985).Google Scholar
  4. 4.
    D. Odstrchil, “Modeling shock waves in open channels using the FCT algorithm,” in: Twentieth Congress of the MAGI [in Russian], Part 1, Vsesoyuznyi Nauchno-Issledovatel’skii Institut Gidrotekhniki Imeni B. E. Vedeneeva, Leningrad (1983).Google Scholar
  5. 5.
    O. A. Chumakov, “Abrupt translation waves in prismatic channels,” Author’s Abstract of Dissertation for Candidate of Technical Sciences, Moscow (1986).Google Scholar
  6. 6.
    A. N. Militeev, “Solution of problems of the hydraulics of the shallow reservoirs and pools of hydraulic facilities by numerical methods,” Author’s Abstract of Dissertation for Doctor of Technical Sciences, Moscow (1982).Google Scholar
  7. 7.
    Handbook on Hydraulic Calculations [in Russian], P. G. Kiselev (ed.), Énergiya, Moscow (1972).Google Scholar
  8. 8.
    G. B. Alalykin, S. K. Godunov, I. L. Kireeva, and L. A. Pliner, Solution of One-Dimensional Problems of Gas Dynamics in Moving Grids [in Russian], Nauka, Moscow (1970).Google Scholar
  9. 9.
    G. M. Fikhtengol’ts, Course on Differential and Integral Calculus [in Russian], Vol. 3, Nauka, Moscow (1969).Google Scholar
  10. 10.
    A. N. Militeev and M. S. Sladkevich, “Difference scheme for solutions of plan equations for shallow water,” Deposited in the All-Union Scientific-Research Institute of Technical Information, No. 3 (1983).Google Scholar
  11. 11.
    O. F. Vasil’ev and V. I. Kvon, “Effect of nonstationarity during the motion of an open liquid flow,” Prikl. Mekh. Tekh. Fiz., No. 1 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • S. Ya. Shkol’nikov

There are no affiliations available

Personalised recommendations