Skip to main content
Log in

Sensitivity of cyclone tracks to the initial moisture distribution: A moist potential vorticity perspective

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the characteristics of moist potential vorticity (MPV) in the vicinity of a surface cyclone center and their physical processes are investigated. A prognostic equation of surface absolute vorticity is then used to examine the relationship between the cyclone tracks and negative MPV (NMPV) using numerical simulations of the life cycle of an extratropical cyclone. It is shown that the MPV approach developed herein, i.e., by tracing the peak NMPV, can be used to help trace surface cyclones during their development and mature stages. Sensitivity experiments are conducted to investigate the impact of different initial moisture fields on the effectiveness of the MPV approach. It is found that the lifetime of NMPV depends mainly on the initial moisture field, the magnitude of condensational heating, and the advection of NMPV. When NMPV moves into a saturated environment at or near a cyclone center, it can trace better the evolution of the surface cyclone due to the conservative property of MPV. It is also shown that the NMPV generation is closely associated with the coupling of large potential temperature and moisture gradients as a result of frontogenesis processes. Analyses indicate that condensation, confluence and tilting play important but different roles in determining the NMPV generation. NMPV is generated mainly through the changes in the strength of baroclinicity and in the direction of the moisture gradient due to moist and/or dry air mass intrusion into the baroclinic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., E.-Y. Hsie, and Y.-H. Kuo, 1987: Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Tech. Note, NCAR / TN-282, 66pp.

  • Betts, A. K., and F. J. Dugan, 1973: Empirical formula for saturation pseudoadiabats and saturation equivalent potential temperature.J. Appl. Meteor.,12, 731–732.

    Article  Google Scholar 

  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones.Extratropical Cyclones. The Erik Palmen Memorial Volume, C. W. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 132.

  • Cao, Z., and H.-R. Cho, 1995: Generation of moist potential vorticity in extratropical cyclones.J. Atmos. Sci.,52, 3263–3281.

    Article  Google Scholar 

  • Cao, Z., and G. W. K. Moore, 1998: A diagnostic study of moist potential vorticity generation in an extratropical cyclone.Adv. Atmos. Sci.,15, 152–166.

    Article  Google Scholar 

  • Cao, Z., R. E. Stewart, and W. D. Hogg, 2001: Extreme winter warming events over the Mackenzie basin: Dynamic and thermodynamic contributions.J. Meteor. Soc. Japan,79, 785–804.

    Article  Google Scholar 

  • Cao, Z., M. Wang, B. A. Proctor, G. S. Strong, R. E. Stewart, H. Ritchie, and J. E. Burford, 2002: On the physical processes associated with the water budget and discharge of the Mackenzie Basin during the 1994/1995 water year.Atmos.-Ocean,40, 125–143.

    Article  Google Scholar 

  • Cao, Z., and D. -L. Zhang, 2004: Tracking surface cyclones with moist potential vorticity.Adv. Atmos. Sci.,21, 830–835.

    Article  Google Scholar 

  • Cao, Z., P. Pellerin, and H. Ritchie, 2004: Verification of mesoscale modeling for the severe rainfall event over southern Ontario in May 2000.Geophys. Res. Lett.,31, L23108, doi:10.1029/2004GL020547.

    Article  Google Scholar 

  • Colle, B. A., and C. F. Mass, 1999: An observational and numerical study of a cold front interacting with the Olympic Mountains during COAST IOP5.Mon. Wea. Rev.,127, 1310–1334.

    Article  Google Scholar 

  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnosis of cyclogenesis.Mon. Wea. Rev.,119, 1929–1953.

    Article  Google Scholar 

  • Fraedrich, K., R. Bach, and G. Naujokat, 1986: Single station climatology of central European fronts: Number, time and precipitation statistics.Contrib. Atmos. Phys.,59, 54–65.

    Google Scholar 

  • Gao, S., X. Li, and W.-K. Tao, 2004: A convective vorticity vector associated with tropical convection: A two-dimensional cloud-resolving modeling study.J. Geophys. Res.,109, D14106, doi:10.1029/2004JD004807.

    Article  Google Scholar 

  • Gyakum, J., 1983: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure.Mon. Wea. Rev.,111, 1156–1173.

    Article  Google Scholar 

  • Gyakum, J., D.-L. Zhang, J. Witte, K. Thomas, and W. Wintels, 1996: CASP II and Canadian cyclones during the 1989–92 cold seasons.Atmos.-Ocean,34, 1–16.

    Google Scholar 

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps.Quart. J. Roy. Meteor. Soc.,111, 877–946.

    Article  Google Scholar 

  • Hsie, E.-Y., R. A. Anthes, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere.J. Atmos. Sci.,41, 2581–2594.

    Article  Google Scholar 

  • Hu, Q., and E. R. Reiter, 1987: A diagnostic study of explosive cyclogenesis in the lee of the Rocky Mountains.Meteor. Atmos. Phys.,36, 161–184.

    Article  Google Scholar 

  • Huo, Z., D.-L. Zhang, and J. Gyakum, 1998: An application of potential vorticity inversion to improving the numerical prediction of the March 1993 superstorm.Mon. Wea. Rev.,126, 424–436.

    Article  Google Scholar 

  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontalcyclone evolution and thermodynamic air-sea interaction.Mon. Wea. Rev.,121, 2153–2176.

    Article  Google Scholar 

  • Neiman, P. J., M. A. Shapiro, and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics.Mon. Wea. Rev.,121, 2177–2199.

    Article  Google Scholar 

  • Petterssen, S., 1936: Contribution to the theory of frontogenesis.Geofys. Publ.,11, 1–27.

    Google Scholar 

  • Reed, R. J., G. A. Grell, and Y.-H. Kuo, 1993: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output.Mon. Wea. Rev.,121, 1595–1612.

    Article  Google Scholar 

  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones.Mon. Wea. Rev.,112, 1577–1589.

    Article  Google Scholar 

  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams, and the tropopause.Extratropical cyclones. The Erik Palmn Memorial Volume, C. W. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 161–191.

  • Szeto, K. K., A. Tremblay, H. Guan, D. R. Hudak, R. E. Stewart, and Z. Cao, 1999: The mesoscale dynamics of freezing rain storms over eastern Canada.J. Atmos. Sci.,56, 1261–1281.

    Article  Google Scholar 

  • Thorpe, A. J., and S. A. Clough, 1991: Mesoscale dynamics of cold fronts: Structures described by dropsoundings in FRONTS 87.Quart. J. Roy. Meteor. Soc.,117, 903–941.

    Article  Google Scholar 

  • Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones.Extratropical cyclones. The Erik Palmn Memorial Volume, C. W. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 81–105.

  • Weldon, R. B., 1979: Satellite training course notes. Part IV. Cloud patterns and upper air wind field. United States Air Force, AWS/TR-79/003.

  • Zhang, G. J., 2003: Lagrangian study of cloud properties and their relationships to meteorological parameters over the U. S. Southern Great Plains.J. Climate,16, 2700–2716.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Z., Zhang, DL. Sensitivity of cyclone tracks to the initial moisture distribution: A moist potential vorticity perspective. Adv. Atmos. Sci. 22, 807–820 (2005). https://doi.org/10.1007/BF02918681

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918681

Key words

Navigation