Immunologic Research

, Volume 12, Issue 1, pp 78–100 | Cite as

Myasthenia gravis: An autoimmune response against the acetylcholine receptor

  • Yvo M. F. Graus
  • Marc H. De Baets
Myasthenia Gravis


Myasthenia gravis (MG) is an organ-specific autoimmune disease caused by an antibody-mediated assault on the muscle nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. Binding of antibodies to the AChR leads to loss of functional AChRs and impairs the neuromuscular signal transmission, resulting in muscular weakness. Although a great deal of information on the immunopathological mechanisms involved in AChR destruction exists due to well-characterized animal models, it is not known which etiological factors determine the susceptibility for the disease. This review gives an overview of the literature on the AChR, MG and experimental models for this autoimmune disease.

Key Words

Myasthenia gravis Experimental autoimmune myasthenia gravis Acetylcholine receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lindstrom J, Shelton D, Fujii Y: Myasthenia gravis. Adv Immunol 1988;42:233–284.PubMedGoogle Scholar
  2. 2.
    Lennon VA, Lindstrom JM, Seybold ME: Experimental autoimmune myasthenia gravis: A model of myasthenia gravis in rats and guinea pigs. J Exp Med 1975;141:1365–1375.PubMedGoogle Scholar
  3. 3.
    Lindstrom JM, Einarson BL, Lennon VA, Seybold ME: Pathological mechanisms in experimental autoimmune myasthenia gravis. I. Immunogenicity of syngeneic muscle acetylcholine receptor and quantative extraction of receptor and antibody-receptor complexes from muscles of rats with experimental autoimmune myasthenia gravis. J Exp Med 1976;144:726–728.PubMedGoogle Scholar
  4. 4.
    Dale H, Feldberg W, Vogt M: Release of acetylcholine at voluntary motor nerve endings. J Physiol 1936;86:353–380.PubMedGoogle Scholar
  5. 5.
    Nachmansohn D: Chemical and molecular basis of nerve activity. 1. Properties and function of the proteins of the acetylcholine cycle in excitable membranes; in Barrón ESG (ed): Modern Trends in Physiology and Biochemistry, New York, Academic Press, 1952, p 230.Google Scholar
  6. 6.
    Lee CY: Chemistry and pharmacology of polypeptide toxins in snake venoms. Annu Rev Pharmacol 1972;12:265–280.PubMedGoogle Scholar
  7. 7.
    Meunier JC, Huchet M, Boquet P, Changeux JP: Separation de la protéine réceptrice de l'acétylcholine et de l'acétylcholine estérase. CR Acad Sci 1971;D272:117.Google Scholar
  8. 8.
    Klett RP, Fulpius BW, Cooper D, Smith M, Reich E, Possani LD: The acetylcholine receptor. I. Purification and characterization of a macromolecule isolated fromElectrophorus electricus. J Biol Chem 1973; 248:6841–6853.PubMedGoogle Scholar
  9. 9.
    Biesecker G: Molecular properties of the cholinergic receptor purified fromElectrophorus electricus. Biochemistry 1973;12:4403–4409.PubMedGoogle Scholar
  10. 10.
    Karlin A, Cowburn DA: The affinity-labeling of partially purified acetylcholine receptor from electric tissue of Electrophorus. Proc Natl Acad Sci USA 1973;70:3636–3640.PubMedGoogle Scholar
  11. 11.
    Patrick J, Lindstrom JM: Autoimmune response to acetylcholine receptor. Science 1973;180:871–872.PubMedGoogle Scholar
  12. 12.
    Santa T, Engel AG, Lambert EH: Histometric study of neuromuscular junction ultrastructure. I. Myasthenia gravis. Neurology 1972;22:71–82.PubMedGoogle Scholar
  13. 13.
    Santa T, Engel AG, Lambert EH: Histometric study of neuromuscular junction ultrastructure. II. Myasthenic syndrome. Neurology 1972; 22:370–376.PubMedGoogle Scholar
  14. 14.
    Salpeter MM: Development and neural control of the neuromuscular junction and of the junctional acetylcholine receptor; in Salpeter MM (ed): The Vertebrate Neuromuscular Junction. New York, Liss, 1987, pp 55–115.Google Scholar
  15. 15.
    Bevan S, Steinbach JH: The distribution of α-bungarotoxin binding sites on mammalian skeletal muscle developing in vitro. J Physiol 1977; 254:345–364.Google Scholar
  16. 16.
    Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Furutani Y, Hirose T, Takashima H, Inayama S, Miyata T, Numa S: Structural homology ofTorpedo californica acetylcholine receptor subunits. Nature 1983;302:528–532.PubMedGoogle Scholar
  17. 17.
    Popot JL, Changeux JP: Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein. Physiol Rev 1984;64:1162–1239.PubMedGoogle Scholar
  18. 18.
    Claudio T: Molecular genetics of acetylcholine receptor channels; Glover D, Hames D (eds): Frontiers in Molecular Biology, Molecular Neurobiology. Oxford, IRL Press, 1989, pp 63–126.Google Scholar
  19. 19.
    Beeson D, Brydson M, Wood H, Vincent A, Newsom-Davis J: Human muscle AChR: Cloning and expression inE. coli of cDNA for the α-subunit. Biochem Soc Trans 1989; 17:219–220.Google Scholar
  20. 20.
    Beeson D, Brydson M, Newsom-Davis J: Nuoleotide sequence of human muscle AChR beta subunit. Nucleic Acids Res 1989;17:4391.PubMedGoogle Scholar
  21. 21.
    Schoepfer R, Luther M, Lindstrom J: The human medulloblastoma cell line TE 671 expresses a muscle like acetylcholine receptor. FEBS Lett 1988;226:235–240.PubMedGoogle Scholar
  22. 22.
    Luther M, Schoepfer R, Whiting P, Casey B, Blatt Y, Montal M, Lindstrom J: A muscle AChR is expressed in the human cerebellar medulloblastoma cell line TE 671. J Neurosci 1989;9:1082–1096.PubMedGoogle Scholar
  23. 23.
    Noda M, Furutani Y, Takahashi H, Toyosato M, Tanabe T, Shimizu S, Kikyotani S, Kayano T, Hirose T, Inayama S, Numa S: Cloning and sequence analysis of calf cDNA encoding α-subunit precursor of muscle acetylcholine receptor. Nature 1983;305:818–823.PubMedGoogle Scholar
  24. 24.
    Tanabe T, Noda M, Furutani Y, Takai T, Takahashi H, Tanaka K, Hirose T, Inayama S, Numa S: Primary structure of β subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur J Biochem 1984;144: 11–17.PubMedGoogle Scholar
  25. 25.
    Takai T, Noda M, Furutani Y, Takahashi H, Notake M, Shimizu S, Kayano T, Tanabe T, Tanaka K, Hirose T, Inayama S, Numa S: Primary structure of subunit precursor of calf-muscle acetylcholine receptor deduced from the cDNA sequence. Eur J Biochem 1984;143:109–115.PubMedGoogle Scholar
  26. 26.
    Kubo T, Noda M, Takai T, Tanabe T, Kayano T, Shimizu S, Tanaka K, Takahashi H, Hirose T, Inayama S, Kikuno R, Miyata T, Numa S: Primary structure of δ subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur J Biochem 1984;149:5–13.Google Scholar
  27. 27.
    Lindstrom J, Merlie J, Yogeeswaran G: Biochemical properties of acetylcholine receptor subunits fromTorpedo californica. Biochemistry 1979; 18:4465–4470.PubMedGoogle Scholar
  28. 28.
    Raftery MA, Hunskappiler MW, Stradler CD, Hood LE: Acetylcholine receptor: Complex of homologous subunits. Science 1980;208:1454–1457.PubMedGoogle Scholar
  29. 29.
    Kubalek E, Ralston S, Lindstrom J, Unwin N: Localization of subunits within the acetylcholine receptor by electron image analysis of tubular crystals fromTorpedo marmorata. J Cell Biol 1987;105:9–18.PubMedGoogle Scholar
  30. 30.
    Kistler J, Stroud RM, Klymkowsky MW, Lalancette RA, Fairclough RH: Structure and function of an acetylcholine receptor. J Biophys 1982;37:371–383.Google Scholar
  31. 31.
    Toyoshima C, Unwin N: Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J Cell Biol 1990;111:2623–2635.PubMedGoogle Scholar
  32. 32.
    Kao P, Dwork A, Kaldany R, Silver M, Wideman J, Stein S, Karlin A: Identification of the subunit half cysteine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem 1984;259:11662–11665.PubMedGoogle Scholar
  33. 33.
    Kao P, Karlin A: Acetylcholine receptor binding site contains a disulphide cross-link between adjacent halfcysteinyl residues. J Biol Chem 1986;261:8085–8088.PubMedGoogle Scholar
  34. 34.
    Devillers-Theiry A, Giraudat J, Bentaboulet M, Changeux JP: Complete mRNA coding sequence of the acetylcholine binding subunit ofTorpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc Natl Acad Sci USA 1983;80:2067–2071.Google Scholar
  35. 35.
    Claudio T, Balliyet M, Patrick J, Heinemann S:Torpedo californica acetylcholine receptor 60,000 dalton subunit: Nucleotide sequence of cloned cDNA deduced amino acid sequence, subunit structural predictions. Proc Natl Acad Sci USA 1983;80:111–115.Google Scholar
  36. 36.
    Guy R: A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. J Biophys 1983;45:249–261.Google Scholar
  37. 37.
    Chavez RA, Hall ZW: Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the α and δ subunits. J Cell Biol 1992;116:385–393.PubMedGoogle Scholar
  38. 38.
    Imoto K, Methfessel C, Sakmann B, Miscina M, Mori Y, Konno T, Fukada K, Kurasaki M, Bujo H, Fujita Y, Numa S: Localization of a delta subunit region determining ion transport through the membrane. Nature 1986;324:670–674.PubMedGoogle Scholar
  39. 39.
    Imoto K, Bush C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukada F, Numa S: Rings of negatively charged aminoacids determine the acetylcholine receptor channel conductance. Nature 1988;335:645–648.PubMedGoogle Scholar
  40. 40.
    Leonard R, Labarca C, Charnet P, Davidson N, Lestr H: Evidence that the M2 membrane-spanning region lines the ion-channel pore of the nicotinic receptor. Science 1988;242:1578–1581.PubMedGoogle Scholar
  41. 41.
    Beeson D, Barnard E: Acetylcholine receptors at the neuromuscular junction; in Vincent, A, Wray D (eds): Neuromuscular Transmission: Basic and Applied Aspects. Manchester, Manchester University Press, 1990, pp 157–181.Google Scholar
  42. 42.
    Diamond J, Miledi R: A study of the foetal and newborn rat muscle fibers. J Physiol 1962;162:393–408.PubMedGoogle Scholar
  43. 43.
    Bevan S, Steinbach JH: The distribution of α-bungarotoxin binding sites on mammalian skeletal muscle developing in vitro. J Physiol 1977; 267:195–213.PubMedGoogle Scholar
  44. 44.
    Salpeter MM: Development and neural control of the neuromuscular junction and of junctional acetylcholine receptor; in Salpeter MM (ed): The Vertebrate Neuromuscular Junction. New York, Liss, 1987, pp 55–115.Google Scholar
  45. 45.
    Hall ZW, Gorin PD, Silberstein L, Bennet C: A postnatal change in the immunological properties of the acetylcholine receptor at rat muscle endplate. J Neurosci 1985;5:730–734.PubMedGoogle Scholar
  46. 46.
    Whiting PJ, Vincent A, Schluep M, Newsom-Davis J: Monoclonal antibodies that distinguish between normal and denervated human acetylcholine receptor. J Neuroimmunol 1986;11:223–235.PubMedGoogle Scholar
  47. 47.
    Gu Y, Hall ZW: Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuron 1988;1:117–125.PubMedGoogle Scholar
  48. 48.
    Nelson S, Shelton GD, Lei S, Lindstrom J, Conti-Tronconi BM: Epitope mapping of monoclonal antibodies to Torpedo acetylcholine receptor subunits, which specifically recognize the ε subunit of mammalian muscle acetylcholine receptor. J Neuroimmunol 1992;36:13–27.PubMedGoogle Scholar
  49. 49.
    Takai T, Noda M, Mishina M, Shimizu S, Furutani Y, Kayano T, Ikeda T, Kubo T, Takahashi H, Takahashi T, Kuno M, Numa S: Cloning sequencing and expression of cDNA for a novel subunit of AChR from calf muscle. Nature 1985;315: 761–764.PubMedGoogle Scholar
  50. 50.
    Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakman B: Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 1986;321:406–411.PubMedGoogle Scholar
  51. 51.
    Witzemann V, Stein E, Barg B, Konno T, Koenen M, Kues W, Criado M, Hoffmann M, Sakmann B: Primary structure and functional expression of the α-, β-, γ-, δ-, and ε-subunits of the acetylcholine receptor from rat muscle. Eur J Biochem 1990;194:437–448.PubMedGoogle Scholar
  52. 52.
    Witzemann V, Barg B, Reese TS: Differential regulation of muscle acetylcholine receptor α- and ε subunit mRNAs. FEBS Lett 1989;223: 104–112.Google Scholar
  53. 53.
    Slater C, Vincent A: Structure and development of the neuromuscular junction; in Vincent A, Wray D (eds): Neuromuscular Transmission: Basic and Applied Aspects. Manchester, Manchester University Press, 1990, pp 1–26.Google Scholar
  54. 54.
    Adams PR: Acetylcholine receptor kinetics. J Membr Biol 1981;58:161–174.PubMedGoogle Scholar
  55. 55.
    Dionne VE, Leibowitz MD: Acetylcholine receptor kinetics: A description from single channel currents at snake neuromuscular junctions. J Biophys 1982;39:253–261.Google Scholar
  56. 56.
    Dreyer F: Acetylcholine receptor. Br J Anaesth 1982;54:115–130.PubMedGoogle Scholar
  57. 57.
    Peper K, Bradley RJ, Dreyer F: The acetylcholine receptor at the neuromuscular junction. Physiol Rev 1982;62:1271–1340.PubMedGoogle Scholar
  58. 58.
    Toyka KV, Drachman DB, Griffin DE, Pestronk A, Winkelstein JA, Fishbeck KH, Kao I: Myasthenia gravis. Study of humoral immune mechanisms by passive transfer to mice. N Engl J Med 1977;296:125–131.PubMedGoogle Scholar
  59. 59.
    Lennon VA, Lindstrom JM, Seybold ME: Experimental autoimmune myasthenia gravis: Cellular and humoral immune responses. Ann NY Acad Sci 1976;274:283–299.PubMedGoogle Scholar
  60. 60.
    De Baets MH, Einarson B, Lindstrom JM, Weigle WO: Lymphocyte activation in experimental autoimmune myasthenia gravis. J Immunol 1982;128:2228–2235.PubMedGoogle Scholar
  61. 61.
    Krolick KA, Urso OE: Analysis of helper-T-cell function by acetylcholine receptor reactive cell lines of defined AChR-subunit specificity. Cell Immunol 1987;105:75–85.PubMedGoogle Scholar
  62. 62.
    Melms A, Schalke BCG, Kirchner T, Müller-Hermelink, Albert E, Wekerle H: Thymus in myasthenia gravis: Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from the thymuses of myasthenia gravis patients. J Clin Invest 1988;81:902–908.PubMedGoogle Scholar
  63. 63.
    Rudensky AY, Preston-Hurlburt P, Hong SC, Barlow A, Janeway CA: Sequence analysis of peptides bound to MHC class II molecules. Nature 1991;353:622–627.PubMedGoogle Scholar
  64. 64.
    Lennon VA, Lambert EH: Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors. Nature 1980;285:238–240.PubMedGoogle Scholar
  65. 65.
    Gomez CM, Richman DP, Berman PW, Burres SA, Arnason BGW, Fitch FW: Monoclonal antibodies against purified nicotinic acetylcholine receptors. Biochem Biophys Res Commun 1979;88:575–582.PubMedGoogle Scholar
  66. 66.
    Tzartos SJ, Lindstrom JM: Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci USA 1980;77:755–759.PubMedGoogle Scholar
  67. 67.
    Watters D, Maelicke A: Organization of ligand binding sites at the acetylcholine receptor: A study with monoclonal antibodies. Biochemistry 1983;22:1811–1819.PubMedGoogle Scholar
  68. 68.
    Whiting P, Vincent A, Newsom-Davis J: Monoclonal antibodies to Torpedo acetylcholine receptor: Characterisation of antigenic determinants within the cholinergic binding site. Eur J Biochem 1985;150:533–539.PubMedGoogle Scholar
  69. 69.
    Tzartos S, Langeberg L, Hochschwender S, Swanson LW, Lindstrom J: Characteristics of monoclonal antibodies to denatured Torpedo and native calf acetylcholine receptors: Species, subunit and region specificity. J Neuroimmunol 1986;10:235–253.PubMedGoogle Scholar
  70. 70.
    Chase BA, Holiday J, Reese JH, Chun LLY, Hawrot E: Monoclonal antibodies with defined specificities for Torpedo nicotinic acetylcholine receptor cross-react with Drosophila neural tissue. Neuroscience 1987; 21:959–976.PubMedGoogle Scholar
  71. 71.
    Dowding AJ, Hall ZW: Monoclonal antibodies specific for each of the two toxin binding sites of Torpedo acetylcholine receptor. Biochemistry 1987;26:6372–6381.PubMedGoogle Scholar
  72. 72.
    Tzartos SJ, Rand DE, Einarson BL, Lindstrom JM: Mapping of surface structures of electrophorus acetylcholine receptor using monoclonal antibodies. J Biol Chem 1981;256: 8635–8645.PubMedGoogle Scholar
  73. 73.
    Mehraban F, Kemshead JT, Dolly JO: Properties of monoclonal antibodies to nicotinic acetylcholine receptor from chick muscle. Eur J Biochem 1984;138:53–61.PubMedGoogle Scholar
  74. 74.
    Vernet der Garabedian B, Morel E: Monoclonal antibodies against the human acetylcholine receptor. Biochem Biophys Res Commun 1983; 113:1–9.PubMedGoogle Scholar
  75. 75.
    Tzartos S, Langeberg L, Hochschwender S, Lindstrom J: Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett 1983;158:116–118.PubMedGoogle Scholar
  76. 76.
    Blair DA, Richman DP, Taves CJ, Koethe S: Monoclonal antibodies to acetylcholine receptor secreted by human x human hybridomas derived from lymphocytes of a patient with myasthenia gravis. Immunol Invest 1986;15:351–364.PubMedGoogle Scholar
  77. 77.
    Tzartos S, Seybold M, Lindstrom J: Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc Natl Acad Sci USA 1982;79:188–192.PubMedGoogle Scholar
  78. 78.
    Whiting PJ, Vincent A, Newsom-Davis J: Monoclonal antihuman acetylcholine receptor antibodies used to analyze antibody specificities and responses to treatment. Neurology 1986;36:612–617.PubMedGoogle Scholar
  79. 79.
    Froehner SC: Identification of exposed and buried determinants of the membrane bound acetylcholine receptor fromTorpedo californica. Biochemistry 1981;20:4905–4915.PubMedGoogle Scholar
  80. 80.
    Blatt Y, Montal M, Lindstrom J, Montal M: Monoclonal antibodies directed against epitopes in the β and subunits of Torpedo cholinergic receptor affect channel gating. J Neurosci 1986;6:481–486.PubMedGoogle Scholar
  81. 81.
    Conti-Tronconi B, Tzartos S, Lindstrom J: Monoclonal antibodies as probes of acetylcholine receptor structure II. Binding to native receptor. Biochemistry 1981;20: 2181–2191.PubMedGoogle Scholar
  82. 82.
    De Baets MH: Autoimmunity to Cell Surface, Receptor (Thesis). Maastricht, Leiter-Nypels, 1984, pp. 94–95.Google Scholar
  83. 83.
    Ratnam M, Sargent PB, Sarin V, Fox JL, Nguyen DL, Rivier J, Criado M, Lindstrom J: Localization of the antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry 1986;25:2621–2632.PubMedGoogle Scholar
  84. 84.
    Ratnam M, Nguyen DL, Rivier J, Sargent PB, Lindstrom J: Transmembrane topography of nicotinic acetylcholine receptor: Immunochemical tests contradict theoretical predictions based on hydrophobicity profiles. Biochemistry 1986;25: 2633–2643.PubMedGoogle Scholar
  85. 85.
    Barkas T, Mauron A, Roth B, Alliod C, Tzartos S, Ballivet M: Mapping of the main immunogenic region and toxin binding site of the nicotinic acetylcholine receptor. Science 1987;235:77–80.PubMedGoogle Scholar
  86. 86.
    Barkas T, Gabriel JM, Mauron A, Hughes G, Roth B, Alliod C, Tzartos S, Baillivet M: Monoclonal antibodies to the main immunogenic region of the nicotinic acetylcholine receptor binds to residues 61–76 of the α-subunit. J Biol Chem 1988; 263:9516–5920.Google Scholar
  87. 87.
    Tzartos S, Kokla A, Walgrave S, Conti-Tronconi B: Localization of the main immunogenic region of human acetylcholine receptor to residues 67–76 of the α-subunit. Proc Natl Acad Sci USA 1988;85:2899–2903.PubMedGoogle Scholar
  88. 88.
    Tzartos SJ, Loutrari HV, Tang F, Kokla A, Walgrave SI, Milius RP, Conti-Tronconi B: Math immunogenic region of Torpedo electroplax and human acetylcholine receptor: Localization and microheterogenity revealed by the use of synthetic peptides. J Neurochem 1990;54:51–61.PubMedGoogle Scholar
  89. 89.
    Bellone M, Tang F, Milius R, Conti-Tronconi B: The main immunogenic region of the acetylcholine receptor: Identification of amino acid residues interacting with different antibodies. J Immunol 1990;143: 3568–3579.Google Scholar
  90. 90.
    Papadouli I, Potamianos S, Hadjidakis I, Balraktaki E, Tsikaris V, Sakarellos C, Cung MT, Marraud M, Tzartos SJ: Antigenic role of single residues within the main immunogenic region of the nicotinic acetylcholine receptor. J Biochem 1990; 269:239–245.Google Scholar
  91. 91.
    Das MK, Lindstrom J: The main immunogenic region of the nicotinic acetylcholine receptor: Interaction of monoclonal antibodies with synthetic peptides. Biochem Biophys Res Commun 1989;165:865–871.PubMedGoogle Scholar
  92. 92.
    Saedi MS, Anand R, Conroy WG, Lindstrom J: Determination of amino acids critical to the main immunogenic region of intact acetylcholine receptors by in vitro mutagenesis. FEBS Lett 1990;267:55–59.PubMedGoogle Scholar
  93. 93.
    Wood H, Beeson D, Vincent A, Newsom-Davis: Epitopes on human acetylcholine receptor α-subunit: Binding of monoclonal antibodies to recombinant and synthetic peptides. Biochem Soc Trans 1989;17: 220–221.Google Scholar
  94. 94.
    Lennon VA, McCormick DJ, Lambert EH, Griemann GE, Zouhair Atassi M: Region of peptide 125–147 of acetylcholine receptor α subunit is exposed at neuromuscular junction and induces experimental autoimmune myasthenia gravis. T-cell immunity and modulating autoantibodies. Proc Natl Acad Sci USA 1985;82:8805–8809.PubMedGoogle Scholar
  95. 95.
    Heidenreich F, Vincent A, Roberts A, Newsom-Davis J: Epitopes on human acetylcholine receptor defined by monoclonal antibodies and myasthenia gravis sera. Autoimmunity 1988;1:285–297.PubMedGoogle Scholar
  96. 96.
    Almon RR, Andrew CG, Appel SH: Serum globulin in myasthenia gravis: Inhibition of α-bungarctoxin binding to acetylcholine receptors. Science 1974;186:55–57.PubMedGoogle Scholar
  97. 97.
    Wilson PT, Lentz TL, Hawrot E: Determination of the primary amino acid sequence specifying the α-bungarotoxin binding site on the α-subunit of the acetylcholine receptor fromTorpedo californica. Proc Natl Acad Sci USA 1985;82: 8790–8794.PubMedGoogle Scholar
  98. 98.
    Conti-Tronconi BM, Tang F, Diethelm Spencer SR, Reihardt-Maelicke, Maelicke A: Mapping of a cholinergic binding site by means of synthetic peptides, monoclonal antibodies, and α-bungarotoxin. Biochemistry 1990;29:6221–6230.PubMedGoogle Scholar
  99. 99.
    Neumann D, Barchan D, Fridkin M, Fuchs S: Analysis of ligand binding to the synthetic dodecapeptide 185–196 of the acetylcholine receptor α-subunit. Proc Natl Acad Sci USA 1986;83:9250–9253.PubMedGoogle Scholar
  100. 100.
    Tzartos SJ, Remoundos MS: Fine localization of the major α-bungarotoxin binding site to residues α185–195 of the acetylcholine receptor: Residues 189, 190, and 195 are indispensable for binding. J Biol Chem 1990;265:21462–21467.PubMedGoogle Scholar
  101. 101.
    McLane KE, Wu XD, Diethelm B, Conti-Tronconi BM: Structural determinants of α-bungarotoxin binding to the sequence segment 181–200 of the muscle nicotinic acetyl-choline receptor α-subunit: Effects of cysteine/cystine modification and species-specific amino acid substitutions. Biochemistry 1991;30:4925–4934.PubMedGoogle Scholar
  102. 102.
    Griesmann GE, McCormick DJ, De Aizpurua HJ, Lennon VA: α-Bungarotoxin binds to human acetylcholine receptor α-subunit peptide 185–199 in solution and solid phase but not to peptide 125–147 and 389–409. J Neurochem 1990; 54:1541–1547.PubMedGoogle Scholar
  103. 103.
    Maelicke A, Plumer Wilk R, Fels G, Spencer SR, Engelhard M, Vettel D, Conti-Tronconi BM: Epitope mapping employing antibodies raised against short synthetic peptides: A study of the nicotinic acetylcholine receptor. Biochemistry 1989;28:1396–1405.PubMedGoogle Scholar
  104. 104.
    Benjamin DC, Berzofsky JA, East IJ, Gurd FRN, Hannum C, Leach SJ, Margoliash E, Michael JG, Miller A, Prager EM, Reichlin M, Secarz EE, Smithgill SJ, Tod PE, Wilson AC: The antigenic structure of proteins: A reappraisal. Annu Rev Immunol 1984;2:67–101.PubMedGoogle Scholar
  105. 105.
    Hohlfeld R, Toyka KV, Tzartos SJ, Carson W, Conti-Tronconi BM: Human T-helper lymphocytes in myasthenia gravis recognize the nicotinic receptor α-subunit. Proc Natl Acad Sci USA 1987;84:5379–5383.PubMedGoogle Scholar
  106. 106.
    Fujii Y, Lindstrom J: Specificity of the T cell response to acetylcholine receptor in experimental autoimmune myasthenia gravis: Response to subunits and synthetic peptides. J Immunol 1988;140: 1830–1837.PubMedGoogle Scholar
  107. 107.
    Zhang Y, Frutiger S, Hughes GJ, Savoy MC, Barkas T: Identification of autoantigens using recombinant proteins: Studies on experimental autoimmune myasthenia gravis. Immunology 1990;71:538–543.PubMedGoogle Scholar
  108. 108.
    Brocke S, Dayan M, Rothbard J, Fuchs S, Mozes E: The autoimmune response of different mouse strains to T-cell epitopes of the human acetylcholine receptor α-subunit. Immunology 1990;69:495–500.PubMedGoogle Scholar
  109. 109.
    Pachner AR, Konator FS, Mulac-Jericevic B, Atassi MZ: An immunodominant site of acetylcholine receptor in experimental myasthenia mapped with T lymphocyte clones and synthetic peptides. Immunol Lett 1989;20:199–204.PubMedGoogle Scholar
  110. 110.
    Infante AJ, Thompson PA, Krolick KA, Wall KA: Determinant selection in murine experimental autoimmune myasthenia gravis: Effect of the BM12 mutation on T cell recognition of acetylcholine receptor epitopes. J Immunol 1991; 146:2977–2982.PubMedGoogle Scholar
  111. 111.
    Sun JB, Harcourt G, Wang ZY, Hawke S, Olson T, Frederikson S, Link H: T cell responses to human recombinant acetylcholine receptor α-subunit in myasthenia gravis and controls. Eur J Immunol 1992; 22:1553–1559.PubMedGoogle Scholar
  112. 112.
    Melms A, Malcherek G, Gern U, Wiethölter H, Müller CA, Schoepfer R, Lindstrom J: T cells from normal and myasthenic individuals recognize the human acetylcholine receptor: Heterogeneity of antigenic sites on the α-subunit. Ann Neurol 1992;31:311–318.PubMedGoogle Scholar
  113. 113.
    Holfeld R, Toyka KV, Miner LL, Walgrave SL, Conti-Tronconi BM: Amphipathic segment of the nicotinic receptor alpha subunit contains epitopes recognized by T lymphocytes in myasthenia gravis. J Clin Invest 1988;81:657–600.Google Scholar
  114. 114.
    Protti MP, Manfredi AA, Straub C, Wu XD, Howard JF, Conti-Tronconi BM: Use of synthetic peptides to establish anti-human acetylcholine receptor CD4+ cell lines from myasthenia gravis patients. J Immunol 1990;144:1711–1720.PubMedGoogle Scholar
  115. 115.
    Protti MP, Manfredi AA, Straub C, Howard JF, Conti-Tronconi BM: Immunodominant regions for T helper-cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis. Proc Natl Acad Sci USA 1990;87:7792–7796.PubMedGoogle Scholar
  116. 116.
    Protti MP, Manfredi AA, Straub C, Howard JF, Conti-Tronconi BM: CD4+ T cell response against the human acetylcholine receptor α subunit in myasthenia gravis: A study with synthetic peptides. J Immunol 1990;144:1276–1281.PubMedGoogle Scholar
  117. 117.
    Melms A, Chrestel S, Scalke BC, Wekerle H, Mauron A, Ballivet M, Barkas T: Autoimmune T lymphocytes in myasthenia gravis: Determination of target epitopes using T lines and recombinant products of the mouse nicotinic receptor gene. J Clin Invest 1989;83:785–790.PubMedGoogle Scholar
  118. 118.
    Oshima M, Ashizawa T, Pollack MS, Atassi MZ: Autoimmune T cell recognition of human acetylcholine recepto: The sites of T cell recognition in myasthenia gravis on the extracellular part of the α subunit. Eur J Immunol 1990;20:2563–2569.PubMedGoogle Scholar
  119. 119.
    Berrih-Aknin S, Cohen-Kaminsky S, Lepage V, Neumann D, Bach JF, Fuchs S: T-cell antigenic sites involved in myasthenia gravis: Correlations with antibody titre and disease severity. J Autoimmun 1991;4:137–153.PubMedGoogle Scholar
  120. 120.
    Zhang Y, Schluep M, Frutiger S, Hughes GJ, Jeannet M, Steck A, Barkas T: Immunological heteregenelty of autoreactive T lymphocytes against the nicotinic acetylcholine receptor in myasthenic patients. Eur J Immunol 1990;20: 2577–2583.PubMedGoogle Scholar
  121. 121.
    Newsom-Davis J, Hartcourt GH, Sommer N, Beeson D, Willcox N, Rothbard JB: T-cell reactivity in myasthenia gravis. J Autoimmun 1989;2(suppl):101–108.PubMedGoogle Scholar
  122. 122.
    Hartcourt GC, Sommer N, Rothbard J, Willcox HN, Newsom-Davis J: A juxta-membrane epitope on the human acetylcholine receptor recognized by T cells in myasthenia gravis. J Clin Invest 1988; 82:1295–1300.Google Scholar
  123. 123.
    Protti MP, Manfredi AA, Wu XD, Molola L, Howard JF, Conti-Tronconi BM: Myasthenia gravis: T epitopes on the delta subunit of human muscle acetylcholine receptor. J Immunol 1991;146: 2253–2261.PubMedGoogle Scholar
  124. 124.
    Protti MP, Manfredi AA, Howard JF, Conti-Tronconi BM: T cells in myasthenia gravis specific for embryonic acetylcholine receptor. Neurology 1991;41:1809–1814.PubMedGoogle Scholar
  125. 125.
    Ong B, Willcox N, Wordsworth P, Beeson D, Vincent A, Altmann D, Lanchburry JS, Hartcourt GC, Bell JI, Newsom-Davis J: Critical role for Val/Gly86 HLA-DR β dimorphism in autoantigen presentation to human T cells. Proc Natl Acad Sci USA 1991;88:7343–7347.PubMedGoogle Scholar
  126. 126.
    Ralston S, Sarin V, Thanh HL, Rivie J, Fox JL, Lindstrom J: Synthetic peptides used to locate the α-bungarotoxin binding site and immunogenic regions on α subunits of the nicotinic acetylcholine receptor. Biochemistry 1987;26: 3261–3266.PubMedGoogle Scholar
  127. 127.
    Oosterhuis HJGH: Myasthenia gravis: in Glaser GH (ed): Clinical Neurology and Neurosurgery Monographs. Edinburgh, Churchill Livingstone, 1984, vol 5.Google Scholar
  128. 128.
    Walker M: Treatment of myasthenia gravis with physostigmine. Lancet 1934;i:1200–1201.Google Scholar
  129. 129.
    Simpson JA: Myasthenia gravis: A new hypothesis. Scott Med J 1960; 5:419–436.Google Scholar
  130. 130.
    Nastuk WL, Plescia OJ, Osserman KE: Changes in serum complement activity in patients with myasthenia gravis. Proc Soc Exp Biol Med 1960;105:177–184.PubMedGoogle Scholar
  131. 131.
    Engel AG, Santa T: Histometric analysis of the ultrastructure of the neuromuscular junction in myasthenia gravis and in the myasthenic syndrome. Ann NY Acad Sci 1977;183:46–65.Google Scholar
  132. 132.
    Fambrough DM, Drachman DB, Satyamurti S: Neuromuscular junction in myasthenia gravis: Decreased acetylcholine receptors. Science 1973;182:293–295.PubMedGoogle Scholar
  133. 133.
    Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD: Antibody to acetylcholine receptor in myasthenia gravis. Neurology 1976;26:1054–1059.PubMedGoogle Scholar
  134. 134.
    Vincent A, Newsom-Davis J: Anti-acetylcholine receptor antibodies inD-penicillamine-associated myasthenia gravis. Lancet 1978;1: 1254.PubMedGoogle Scholar
  135. 135.
    Vincent A: Immunology of acetylcholine receptors in relation to myasthenia gravis. Physiol Rev 1980;60:756–824.PubMedGoogle Scholar
  136. 136.
    Wray D: The Lambert-Eaton myasthenic syndrome; in Vincent A, Wray D (eds): Neuromuscular Transmission: Basic and Applied Aspects. Manchester, Manchester University Press, 1990, pp 249–267.Google Scholar
  137. 137.
    Engel AG: Congenital myasthenic syndromes; in Vincent A, Wray D (eds): Neuromuscular Transmission: Basic and Applied Aspects. Manchester, Manchester University Press, 1990, pp 200–225.Google Scholar
  138. 138.
    Engel AG: Congenital myasthenic syndromes. J Child Neurol 1988;3: 233–246.PubMedGoogle Scholar
  139. 139.
    Engel AG, Walls TJ, Nagel A, Uchitel O: Newly recognized congenital myasthenia syndromes. I. Congenital paucity of synaptic vesicles and reduced quantal release. II. High conductance fast-channel syndrome. III. Abnormal acetylcholine receptor (AChR) interaction with acetylcholine. IV. AChR deficiency and short channel-open time. Prog Brain Res 1990;84: 125–137.PubMedGoogle Scholar
  140. 140.
    Mora M, Lambert EH, Engel AG: Synaptic vesicle abnormality in familial infantile myasthenia. Neurology 1987;37:206–214.PubMedGoogle Scholar
  141. 141.
    Sanders DB: The electrodiagnosis of myasthenia gravis. Ann NY Acad Sci 1987;505:539–556.PubMedGoogle Scholar
  142. 142.
    Mossman S, Vincent A, Newsom-Davis J: Myasthenia gravis without acetycholine receptor antibody: A disctinct disease entity. Lancet 1986;i:116–118.Google Scholar
  143. 143.
    Yamamoto T, Vincent A, Clulla TA, Lang B, Johnston I, Newsom-Davis J: Seronegative myasthenia gravis: A plasma factor inhibiting agonist-induced acetylcholine receptor function copurifies with IgM. Ann Neurol 1991;30:550–557.PubMedGoogle Scholar
  144. 144.
    Compston DAS, Vincent A, Newsom-Davis J, Batchelor JR: Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. Brain 1980;102:579–601.Google Scholar
  145. 145.
    Bell J, Smoot S, Newby C, Toyka K, Rassenti L, Smith K, Hohlfeld R, McDevit H, Steinman L: HLA-DQ beta-chain polymorphism linked to myasthenia gravis. Lancet 1986;i,10:1058–1060.Google Scholar
  146. 146.
    Degli-Esposti MA, Andreas A, Christiansen FT, Schalke B, Albert E, Dawkins RL: An approach to the localization of susceptibility genes for generalized myasthenia gravis by mapping recombinant ancestral haplotypes. Immunogenetics 1992;35:355–364.PubMedGoogle Scholar
  147. 147.
    Vincent A, Whiting PJ, Schluep M, Heidenreich F, Lang B, Roberts A, Willcox N, Newsom-Davis J: Antibody heterogeneity and specificity in myasthenia gravis. Ann NY Acad Sci 1987;505:106–120.PubMedGoogle Scholar
  148. 148.
    McGuire LJ, Huang DP, Teoh R, Arnold M, Wong K, Lee JCK: Epstein-Bar virus genome in thymoma and thymic lymphoid hyperplasia. Am J Pathol 1988;131: 385–390.PubMedGoogle Scholar
  149. 149.
    Klavinsky LS, Willcox NH, Richmond JE, Newsom-Davis J: Attempted isolation of viruses from myasthenia gravis thymus. J Neuroimmunol 1986;11:287–299.Google Scholar
  150. 150.
    Aoki T, Drachman DB, Asher DM, Gibbs CJ, Bahmanyar S, Wolinsky JS: Attempts to implicate viruses in myasthenia gravis. Neurology 1985;35:135–192.Google Scholar
  151. 151.
    Klavinsky LS, Willcox N, Oxford JS, Newsom-Davis J: Anti-virus antibodies in myasthenia gravis. Neurology 1985;35:1381–1384.Google Scholar
  152. 152.
    Stefansson K, Dieperink ME, Richman DP, Marton LS: Sharing of epitopes by bacteria and the nicotinic acetylcholine receptor: A possible role in the pathogenesis of myasthenia gravis. Ann NY Acad Sci 1987;505:451–460.PubMedGoogle Scholar
  153. 153.
    Dyrberg T, Petersen JS, Oldstone MB: Immunological crossreactivity between mimicking epitopes on a virus protein and a human autoantigen depends on a single amino acid residue. Clin Immunol Immunopathol 1990;54:290–297.PubMedGoogle Scholar
  154. 154.
    Dweyer DS, Vakil M, Bradley RJ, Oh SJ, Kearney JF: A possible cause of myasthenia gravis: Idiotypic networks involving bacterial antigens. Ann NY Acad Sci 1987; 505:461–471.Google Scholar
  155. 155.
    Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MB: Molecular mimicry and myasthenia gravis: An autoantigenic site of the acetylcholine receptor α-subunit that has biological activity and reacts immunochemically with herpes simplex virus. J Clin Invest 1989;84:1174–1180.PubMedGoogle Scholar
  156. 156.
    Oldstone MBA: Molecular mimicry and autoimmune disease. Cell 1987;50:819–820.PubMedGoogle Scholar
  157. 157.
    Manfredi AA, Bellone M, Protti MP, Conti-Tronconi BM: Molecular mimicry among human autoantigens. Immunol Today 1991;12: 46–47.PubMedGoogle Scholar
  158. 158.
    Bever C, Change H, Penn A, Jaffe I, Bock E: Pencillamine-induced myasthenia gravis: Effects of penicillamine on acetylcholine receptor. Neurology 1982;32:1077.PubMedGoogle Scholar
  159. 159.
    Kuncl RW, Pestronk A, Drachman DB, Rechthand E: The pathophysiology of penicillamine-induced myasthenia gravis. Ann Neurol 1986;20:740–744.PubMedGoogle Scholar
  160. 160.
    Smith CI, Aarli JA, Biberfeld P, Bolme P, Christensson B, Gahrton G, Hammerstrom L, Lefvert AK, Lonnqvist B, Matell G: Myasthenia gravis after bone-marrow transplantation: Evidence for a donor origin. N Engl J Med 1983; 309:1565–1568.PubMedGoogle Scholar
  161. 161.
    Bolger GB, Sullivan KM, Spence AM, Appelbaum FR, Johnston R, Sanders JE, Deeg HJ, Witherspoon RP, Doney KC, Nims J: Myasthenia gravis after allogenic bone marrow transplantation: Relationship to chronic graft-versushost disease. Neurology 1986;36: 1087–1091.PubMedGoogle Scholar
  162. 162.
    Wodzig KWH, Majoor GD, van Breda Vriesman PJC: On the localization of effector cells in cyclosporin-induced autoimmunity. Autoimmunity 1991;10:275–283.PubMedGoogle Scholar
  163. 163.
    Verschuuren JJGM, Bos GMJ, Majoor GD, De Beats MH, van Breda Vriesman PJC: Spontaneous myasthenia gravis in a rat after syngeneic bone marrow transplantation (abstract). Proc 2nd Eur Conf Myasthenia gravis, Tremezzo, 1989, p 33.Google Scholar
  164. 164.
    Castleman B, Norris EH: The pathology of the thymus gland in myasthenia gravis. Ann NY Acad Sci 1966;135:496–503.PubMedGoogle Scholar
  165. 165.
    Bofill M, Jannossy G, Willcox N, Chilosi M, Treidosiewicz K, Newsom Davis J: Microenvironment in the normal thymus and the thymus in myasthenia gravis. Am J Pathol 1985;119:462–473.PubMedGoogle Scholar
  166. 166.
    Oosterhuis HJGH, Limburg PC, Hummel-Tappel E, van den Burg W, The TH: Anti-acetylcholine receptor antibodies in myasthenia gravis. III. The effect of thymectomy. J Neurol Sci 1985;69:335–343.PubMedGoogle Scholar
  167. 167.
    Scadding GK, Vincent A, Newsom-Davis J, Henry K: Acetylcholine receptor synthesis by thymic lymphocytes: Correlation with thymic histology. Neurology 1981; 31:935.PubMedGoogle Scholar
  168. 168.
    Kao I, Drachman DB: Thymic muscle cells bear acetylcholine receptors: Possible relation to myasthenia gravis. Science 1977;195: 74–75.PubMedGoogle Scholar
  169. 169.
    Schluep M, Willcox NH, Vincent A, Dhoot GK, Newsom-Davis J: Acetylcholine receptors in human myoid cells in situ: An immunohistochemical study. Ann Neurol 1987;22:212–222.PubMedGoogle Scholar
  170. 170.
    Kirchner T, Hoppe F, Schalke B, Müller-Hermelink HK: Microenvironment of thymic myoid cells in myasthenia gravis. Virchows Arch B Cell Pathol 1988;54:395–402.Google Scholar
  171. 171.
    Schönbeck S, Padberg F, Hohlfeld R, Wekerle H: Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice: A new model of myasthenia gravis. J Clin Invest 1992;90:245–250.PubMedGoogle Scholar
  172. 172.
    Gender KI, Marx A, Witzemann V, Schalke B, Kirchner Th, Müller-Hermelink HK: Genomic organization and lack of transcription of the nicotinic acetylcholine receptor subunit genes in myasthenia gravis associated thymoma. Lab Invest 1992;66:452–458.Google Scholar
  173. 173.
    Geuder KI, Schoepfer R, Kirchaer T, Marx A, Müller-Hermelink: The gene of the α-subunit of the acetylcholine receptor: Molecular organization and transcription in myasthenia-associated thymomas. Thymus 1989;14:179–186.PubMedGoogle Scholar
  174. 174.
    Hara Y, Ueno S, Uemichi T, Takahashi N, Yorifuji S, Fujii Y, Tarui S: Neoplastic epithelial cells express α-subunit of muscle nicotinic acetylcholine receptor in thymomas from patients with myasthenia gravis. FEBS Lett 1991;279: 137–140.PubMedGoogle Scholar
  175. 175.
    Kirchner T, Tzartos S, Hoppe F, Schalke B, Wekerle H, Müller-Hermelink HK: Pathogenesis of myasthenia gravis: Acetylcholine receptor-related antigenic determinants in tumour-free thymuses and thymic epithelial tumours. Am J Pathol 1988;130:268–280.PubMedGoogle Scholar
  176. 176.
    Osborn M, Marx A, Kirchner T, Tzartos SJ, Plessman U, Weber K: A shared epitope in the acetylcholine receptor α-subunit and fast troponin I of skeletal muscle. Am J Pathol 1992;140:1215–1223.PubMedGoogle Scholar
  177. 177.
    Sommer N, Willcox N, Harteourt GC, Newsom-Davis J: Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor-reactive T cells. Ann Neurol 1990;28:312–319.PubMedGoogle Scholar
  178. 178.
    Vincent A: Myasthemia gravis—An autoimmune disorder of neuromuscular transmission; in Vincent A, Wray D (eds): Neuromuscular Transmission: Basic and Applied Aspects. Manchester, Manchester University Press, 1990, pp. 226–248.Google Scholar
  179. 179.
    Kuks JBM, Limburg PC, Oosterhuis HJGH, The TH: Antibodies to acetylcholine receptors in myasthenia gravis: In vitro synthesis by peripheral blood lymphocytes before and after thymectomy. Clin Exp Immunol 1992;87:246–250.PubMedGoogle Scholar
  180. 180.
    Vincent A, Newsom-Davis J, Newton P, Beck N: Acetylcholine receptor antibody and clinical response to thymectomy in myasthenia gravis. Neurology 1983;33:1276–1282.PubMedGoogle Scholar
  181. 181.
    Kuks JBM, Oosterhuis HJGH, Limburg PC, The TH: Anti-acetylcholine receptor antibodies decrease after thymectomy in patients with myasthenia gravis: Clinical correlations. J Autoimmun 1992;4:197–211.Google Scholar
  182. 182.
    Conti-Tronconi BM, Scotti A, Sghirlanzoni A, Clementi F: Specific involvement of peripheral T lymphocytes against acetylcholine receptors in myasthenia gravis. J Neurol Neurosurg Psychiatry 1983;46:832–836.PubMedGoogle Scholar
  183. 183.
    Bennor R, Hejmans W, Haajman JJ: The bone marrow: The major source of serum immunoglobulins, but still a neglected site of antibody formation. Clin Exp Immunol 1981;46:1.Google Scholar
  184. 184.
    Berman PW, Patrick J: Experimental myasthenia gravis. A murine system. J Exp Med 1980;151:204–233.PubMedGoogle Scholar
  185. 185.
    Tarrab-Hazdai R, Aharonov A, Silverman I, Fuchs S, Abramsky O: Experimental autoimmune myasthenia gravis induced in monkeys by purified acetylcholine receptor. Nature 1975;256:128–130.PubMedGoogle Scholar
  186. 186.
    Lindstrom JM, Engel AG, Seybold ME, Lennon VA, Lambert EH: Pathclogical mechanisms in experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies. J Exp Med 1976; 144:739–753.PubMedGoogle Scholar
  187. 187.
    Einarson B, Gullick W, Conti-Troneoni B, Ellisman M, Lindstrom J: Subunit composition of bovine muscle acetylcholine receptor. Biochemistry 1982;21:5295–5302.PubMedGoogle Scholar
  188. 188.
    Lindstrom J, Cambell M, Nave B: Specificities of antibodies to acetylcholine receptors. Muscle and Nerve 1978;1:140–145.PubMedGoogle Scholar
  189. 189.
    Lindstrom J: Autoimmune response to acetylcholine receptors in myasthenia gravis and its antimal model. Adv Immunol 1979; 27:1–50.PubMedGoogle Scholar
  190. 190.
    Engel AG, Tsujihata M, Lambert EH, Lindstrom J, Lennon V: Experimental autoimmune myasthenia gravis: A sequential and quantitative study of the neuromuscular junction ultrastructure and electrophysiologic correlations. J Neuropathol Exp Neurol 1976;35:569–587.PubMedGoogle Scholar
  191. 191.
    Engel A, Tsujihata M, Lindstrom J, Lennon V: The motor end plate in myasthenia gravis and experimental autoimmune myasthenia gravis. Ann NY Acad Sci 1976; 274:60–79.PubMedGoogle Scholar
  192. 192.
    Scadding GK, Calder L, Vincent A, Prior C, Wray D, Newsom-Davis J: Anti-acetylcholine receptor antibodies induced in mice by syngeneic receptor without adjuvants. Immunology 1986;58:151–155.PubMedGoogle Scholar
  193. 193.
    Jermy A, Fisher C, Vincent A, Willcox N, Newsem-Davis J: Experimental autoimmune myasthenia gravis induced in mice without adjuvants: Genetic susceptibility and adoptive transfer of weakness. J Autoimmun 1989;2:675–688.PubMedGoogle Scholar
  194. 194.
    Lindstrom JM, Einarson B, Meriie J: Immunization of rats with polypeptide chains from Torpedo acetylcholine receptor causes an autoimmune response to receptors in rat muscle. Proc Natl Acad Sci USA 1978;75:769–773.PubMedGoogle Scholar
  195. 195.
    Lennon VA, Griesmann GA, McCormick DJ, Huang ZX, Feng H, Lambert EH: Definition of myasthenogenic sites of the human acetylcholine receptor using synthetic peptides. Ann NY Acad Sci 1987;505:439–450.PubMedGoogle Scholar
  196. 196.
    McCormick DJ, Griesmann GF, Huang ZX, Lambert EH, Lennon VA: Myasthenogenicity of human acetylcholine receptor synthetic α subunit peptide 125–147 does not require intramolecular disuifide cyclization. J Immunol 1987;139: 2615–2619.PubMedGoogle Scholar
  197. 197.
    Takamori M, Okumura S, Nagata M, Yoshikawa H: Myasthenogenic significance of synthetic α-subunit peptide 183–200 ofTorpedo californica and human acetylcholine receptor. J Neurol Sci 1988;85:121–129.PubMedGoogle Scholar
  198. 198.
    Lennon VA, Lambert EH, Leiby KR, Okarma TB, Talib S: Recombinant human acetylcholine receptor α-subunit induces chronic experimental autoimmune myasthenia gravis. J Immunol 1991;146:2245–2248.PubMedGoogle Scholar
  199. 199.
    Neumann D, Gershoni JM, Fridkin M, Fuchs S: Antibodies to synthetic peptides as probes for the binding site on the α-subunit. Proc Natl Acad Sci USA 1985;83:9250–9253.Google Scholar
  200. 200.
    Criade M, Sarin V, Fox JL, Lindstrom J: Evidence that the acetylcholine binding site is not formed by the sequence α127–143 of the acetylcholine receptor. Biochemistry 1986;25:2839–2846.Google Scholar
  201. 201.
    Barkas T, Mauron A, Roth B, Alloid C, Tzartos SJ, Ballivet M: Mapping of the main immunogenic region and toxin-binding site of the nicotinic acetylcholine receptor. Science 1987;235:77–80.PubMedGoogle Scholar
  202. 202.
    Jermy A, Fisher C, Vincent A, Willeox N, Newsom-Davis J: Mice immunised with recombinant α subunit of the human acetylcholine receptor develop anti-AChR antibodies but no experimental autoimmune myasthenia gravis (abstract). J Autoimmun 1989;2:903–904.Google Scholar
  203. 203.
    Takamori M, Hamada T, Okumura S: Myasthenogenicity in the main immunogenic region of the acetylcholine receptor as modified by conformational design: An approach to antigenic synthetic peptides. J Neurol Sci 1992;109:182–187.PubMedGoogle Scholar
  204. 204.
    Toyka KV, Drachman DB, Pestronk A, Kao I: Myasthenia gravis: Passive transfer from man to mouse. Science 1975;190:397–399.PubMedGoogle Scholar
  205. 205.
    Richman DP, Gomez CM, Berman PW, Burras SA, Fitch FW, Arnason BG: Monoclonal antiacetylcholine receptor antibodies can cause experimental myasthenia. Nature 1980;286:738–739.PubMedGoogle Scholar
  206. 206.
    Gomez CM, Richman DP: Monoclonal anti-acetylcholine receptor antibodies with differing capacities to induce experimental autoimmune myasthenia gravis. J Immunol 1983;135:234–241.Google Scholar
  207. 207.
    Tzartos SJ, Hochschwender S, Vasquez P, Lindstrom J: Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol 1987;15:185–194.PubMedGoogle Scholar
  208. 208.
    Gomez CM, Wollman RL, Richman DP: Induction of morphologic changes of both acute and chronic experimental myasthenia by monoclonal antibody directed against acetylcholine receptor. Acta Neuropathol 1984;63:131–143.PubMedGoogle Scholar
  209. 209.
    Corey AL, Richman DP, Shuman CA, Gomez CM, Arnason BGW: Use of monoclonal anti-acetylcholine receptor antibodies to investigate the macrophage inflammation of acute experimental myasthenia gravis. Neurology 1985;35:1455–1460.PubMedGoogle Scholar
  210. 210.
    Engel A, Sakakibara H, Sahashi K, Lindstrom J, Lambert E, Lennon VA: Passively transferred experimental autoimmune myasthenia gravis. Neurology 1987;29:179–188.Google Scholar
  211. 211.
    Gomez C, Richman DP: Chronic experimental autoimmune myasthenia gravis induced by monoclonal antibody to acetylcholine receptor: Biochemical and electrophysiologic criteria. J Immunol 1987;139:73–76.PubMedGoogle Scholar
  212. 212.
    Biesecker F, Koffler D: Resistance to experimental autoimmune myasthenia gravis in genetically inbred rats. J Immunol 1988;140: 3406–3410.PubMedGoogle Scholar
  213. 213.
    Christadoss P, Lindstrom J, Munro S, Tala N: Muscle acetylcholine receptor loss in murine experimental autoimmune MG: Correlated with cellular, humoral and clinical responses. J Immunol 1985;134:29–41.Google Scholar
  214. 214.
    Fuchs S, Nevo D, Tarrab-Hazdai R: Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature 1976; 263:329–330.PubMedGoogle Scholar
  215. 215.
    Berman PW, Patrick J: Linkuge between the frequency of muscular weakness and loci that regulate immune responsiveness in murine experimental myasthenia gravis. J Exp Med 1980;152:507–520.PubMedGoogle Scholar
  216. 216.
    Christadoss P: C5 gene influences the development of murine myasthenia gravis. J Immunol 1988; 140:2589–2592.PubMedGoogle Scholar
  217. 217.
    Christadoss P, Lennon VA, Hrco CJ, David CS: Genetic control of experimental autoimmune MG in mice. II. Ia molecules mediate cellular immune responsiveness to acetylcholine receptors. J Immunol 1982;128:1141–1144.PubMedGoogle Scholar
  218. 218.
    Christadoss P, Lindstrom JM, Melvold RW, Talal N: Mutation at the I-Aβ chain prevents experimental autoimmune myasthenia gravis. Immunogenetics 1985;21:33–38.PubMedGoogle Scholar
  219. 219.
    Seybold ME, Lambert EH, Lennon VA, Lindstrom JM: Experimental autoimmune myasthenia gravis: Clinical, neurophysiologic and pharmacologic aspects. Ann NY Acad Sci 1976;274:275–282.PubMedGoogle Scholar
  220. 220.
    Heilbronn E, Mattson C, Thornell LE, Sjöströ MM, Stålberg E, Hilton-Brown P, Elmqvist D: Experimental myasthenia gravis in rabbits: Biochemical, immunological, electrophysiological, and morphological aspects. Ann NY Acad Sci 1976;274:337–353.PubMedGoogle Scholar
  221. 221.
    Verschuuren JJGM, Spaans F, De Baets MH: Single fiber electromyography in experimental autoimmune myasthenia gravis. Muscle Nerve 1989;13:285–292.Google Scholar
  222. 222.
    Engel AG, Sakakibara H, Sahashi K, Lindstrom JM, Lambert EH, Lennon VA: Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantative study of the motor end-plate fine structure and uitrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Neurology 1979;29:179–188.PubMedGoogle Scholar
  223. 223.
    Toyka KV, Löwenadier B, Heiniger K, Besinger KA, Birnberger KL, Fateh-Moghadam A, Heilbron E: Passively transferred myasthenia gravis: Protection of mouse endplates by fragments from human myasthenia gravis IgG. J Neurol Neurosurg Psychiatry 1980;43:836–842.PubMedGoogle Scholar
  224. 224.
    Donaldson JO, Penn AS, Lisak RP, Abramsky O, Brenner T, Schotland DL: Anti-acetylcholine receptor antibody in neonatal myasthenia gravis. Am J Dis Child 1981;135:222–226.PubMedGoogle Scholar
  225. 225.
    Eymard B, Vernet der Garabedian B, Berrih-Aknin S, Pannier C, Bach JF, Morel E: Anti-acetylcholine receptor antibodies in neonatal myasthenia gravis: Heterogeneity and pathogenic significance. J Autoimmun 1991;4:185–195.PubMedGoogle Scholar
  226. 226.
    Dau PC, Lindstrom JM, Cassel CK, Denys EH, Shev EE, Spitler LE: Plasmaphoresis and immuno-suppressive drug therapy in myasthenia gravis. N Engl J Med 1977; 297:1134–1140.PubMedGoogle Scholar
  227. 227.
    Newsom-Davis J, Pinching AJ, Vincent A, Wilson SG: Funtion of circulating antibody to acetylcholine-receptor in myasthenia gravis investigated by plasma exchange. Neurology 1978;28:266–272.PubMedGoogle Scholar
  228. 228.
    Pinching AJ, Peters DK, Newsom-Davis J: Remission of myasthenia gravis following plasma exchange. Lancet 1976;ii:1373–1376.Google Scholar
  229. 229.
    Kao I, Drachman DB: Myasthenic immunoglobulin accelerates acetylcholine receptor degradation. Science 1977;196:527–529.PubMedGoogle Scholar
  230. 230.
    Drachman DB, Angus CW, Adams RN, Michelson JD, Hoffman GJ: Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 1978;298:1116–1122.PubMedGoogle Scholar
  231. 231.
    Appel SH, Anwyl R, McAdams MW, Elias S: Accelerated degradation of acetylcholine receptor from cultured rat myotubes with myasthenia gravis sera and globulins. Proc Natl Acad Sci USA 1977;74:2130–2134.PubMedGoogle Scholar
  232. 232.
    Ashizawa T, Elias SB, Appel SH: Imeraction of myasthenic immunoglobulins and cholinergic agonists on acetylcholine receptors of rat myotubes. Ann Neurol 1982; 11:22–27.PubMedGoogle Scholar
  233. 233.
    Heineman S, Merlie J, Lindstrom J: Modulation of acetylcholine receptor in rat diaphragm by antireceptor sera. Nature 1978;274:65–68.Google Scholar
  234. 234.
    Sher E, Clementi F: Effect of specific antibodies on acetylcholine receptor turnover: Increased degradation controls low density of cell surface receptor. Neurology 1984;34:208–211.PubMedGoogle Scholar
  235. 235.
    Heineman S, Bevan R, Kullberg J, Lindstrom J, Rice J: Modulation of acetylcholine receptor by antibody against the receptor. Proc Natl Acad Sci USA 1977;74:3090–3094.Google Scholar
  236. 236.
    Lindstrom J, Einarson B: Antigenic modulation and receptor loss in experimental autoimmune myasthenia gravis. Muscle Nerve 1979;2:172–179.Google Scholar
  237. 237.
    Merlie JP, Heinemann S, Lindstrom JM: Acetylcholine receptor degradation in adult rat diaphragms in organ culture and the effect of anti-acetylcholine receptor antibodies. J Biol Chem 1979; 254:6320–6327.PubMedGoogle Scholar
  238. 238.
    Tzartos SJ, Starzinsk-Powitz A: Decrease in acetylcholine-receptor content of human myotube cultures mediated by monoclonal antibodies to α, β and subunits. FEBS Lett 1986;196:91–95.PubMedGoogle Scholar
  239. 239.
    Tzartos SJ, Sophianos D, Zimmerman K, Starzinski-Powitz A: Antigenic modulation of human myotube acetylcholine receptor by myasthenic sera: Serum tiler determines receptor internalization rate. J Immunol 1986;136:2131–3238.Google Scholar
  240. 240.
    Sophianos D, Tzartos SJ: Fab fragments of monoclonal antibodies protect the human acetylcholine receptor against antigenic modulation caused by myasthenic sera. J Autoimmun 1989;2:777–789.PubMedGoogle Scholar
  241. 241.
    Conti-Tronconi B, Brigonzi A, Fumagalli G, Sher M, Cosi V, Piccolo G, Clementi F: Antibody induced degradation of acetylcholine receptor in myasthenia gravis: Clinical correlates and pathogenetic significance. Neurology 1981;31:1440–1444.Google Scholar
  242. 242.
    Eymard B, de la Porte S, Pannier C, Berrih-Aknin S, Morel E, Fardeau M, Bach JF, König J: Effect of myasthenic sera on the number and distribution of acetylcholine receptors in muscle and nervemuscle cultures from rat: Correlations with clinical state. J Neurol Sci 1988;86:41–59.PubMedGoogle Scholar
  243. 243.
    Drachman DB, Robert RN, Josifek LF, Self SG: Functional activities of autoantibodies to the acetylcholine receptors and the clinical severity of myasthenia gravis. N Engl J Med 1982;307:769–775.PubMedGoogle Scholar
  244. 244.
    Hudgson P, McAdams MW, Pericak-Vance MA, Edwards AM, Roses AD: Effect of sera from myasthenia gravis patients on acetylcholine receptors in myotube cultures. J Neurol Sci 1982;59:37–45.Google Scholar
  245. 245.
    Bevan S, Kullberg RW, Heiremann S: Human myasthenic sera reduce acetylcholine sensitivity of human muscle cells in tissue culture. Nature 1977;267:263–265.PubMedGoogle Scholar
  246. 246.
    Tzartos SJ, Sophianos D, Efthimiados A: Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. A Fab monoclonal antibody protects against antigenic modulation by human sera. J Immunol 1985;134: 2343–2349.PubMedGoogle Scholar
  247. 247.
    Kinoshita T: Biology of complement: The overture. Immunol Today 1991;12:291–295.PubMedGoogle Scholar
  248. 248.
    Engel AG, Lambert EH, Howard FM: Immune complexes (IgG and C3) at the motor endplate in myasthenia gravis. Ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin Proc 1977;52:267–280.PubMedGoogle Scholar
  249. 249.
    Sahashi K, Engel AG, Lambert EH, Howard FM: Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor endplate in myasthenia gravis. J Neuropathol Exp Neurol 1980;37:213–233.Google Scholar
  250. 250.
    Childs LA, Harrison R, Lunt GG: Complement dependent toxicity of serum from myasthenic patients to muscle cells in culture. J Neuroimmunol 1985;9:69–80.PubMedGoogle Scholar
  251. 251.
    Ashizawa T, Appel SH: Complement-mediated lysis of cultured rat myotubes by myasthenic immunoglobulins. Neurology 1985; 35:1748–1753.PubMedGoogle Scholar
  252. 252.
    Sahashi K, Engel AG, Lindstrom JM, Lambert EH, Lennon VA: Ultrastructural localization of immune complexes (IgG and C3) at the endplate in experimental autoimmune myasthenia gravis. J Neuropathol Exp Neurol 1978;37: 213–233.Google Scholar
  253. 253.
    De Baets M: Experimental autoimmune myasthenia gravis; in Vincent A, Wray D (eds): Neuromuscular Transmission: Basic and Applied Aspects. Manchester, Manchester University Press, 1990, pp 268–288.Google Scholar
  254. 254.
    Lennon VA, Lambert AH: Monoclonal antibodies to acetylcholine receptors: Evidence for a dominant idiotype and requirement of complement for pathogenicity. Ann NY Acad 1981;377:77–96.Google Scholar
  255. 255.
    Lennon VA, Seybold ME, Lindstrom JM, Cochrane C, Ulevitch R: Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 1978;147:973–983.PubMedGoogle Scholar
  256. 256.
    Biesecker G, Gomez CM: Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol 1989;142:2654–2659.PubMedGoogle Scholar
  257. 257.
    Wasserman NH, Pern AS, Freimuth PI, Treptow N, Wentzel S, Cleveland WL, Erlanger BF: Monoclonal antibodies to the acetylcholine receptor by a normally functioning auto anti-idiotypic mechanism. Proc Natl Acad Sci USA 1982;79:4810–4814.Google Scholar
  258. 258.
    Donnelly A, Mihovilovic M, Gonzalez-Ros JM, Ferragut JA, Richman D, Martinez-Carrion M: Noncholinergic site-directed monoclonal antibody can impair agonist induced ion flux inTorpedo californica acetylcholine receptor. Proc Natl Acad Sci USA 1984;81:7999–8003.PubMedGoogle Scholar
  259. 259.
    Sanders DB, Kim YI, Howard JF, Johns TR, Muller WH: Intercostal muscle biopsy studies in myasthenia gravis: Clinical correlations and the direct effects of drugs and myasthenic serum. Ann NY Acad Sci 1981;377:544–566.PubMedGoogle Scholar
  260. 260.
    Schuetze SM, Vicini S, Hall ZW: Myasthenic serum selectively blocks acetylcholine receptors with long channel open times at developing rat endplates. Proc Natl Acad Sci USA 1985;82:2533–2537.PubMedGoogle Scholar
  261. 261.
    Shibuya N: Serum factor blocks neuromuscular trasmission in myasthenia gravis: Electrophysiologic study with intracellular microelectrodes. Neurology 1978;28:804–811.PubMedGoogle Scholar
  262. 262.
    Fulpius BW, Lefvert AK, Cuénoud S, Mourey A: Preperties of specific populations of anti-acetylcholine receptor antibodies in myasthenia gravis. Ann NY Acad Sci 1981; 377:307–315.PubMedGoogle Scholar
  263. 263.
    Mittag TW, Xu X, Moshoviannis H, Kornfeld P, Genkins G: Analysis of false negative results in the immunoassay for anti-acetylcholine receptor antibodies in myasthenia gravis. Clin Immunol Immunopathol 1984;31:191–201.PubMedGoogle Scholar
  264. 264.
    Whiting PJ, Vincent A, Newsom-Davis J: Acetylcholine receptor antibody characteristics in myasthenia gravis: Fractionation of α-bungarotoxin binding site antibodies and their relationship to IgG subclass. J Neurol 1983;5:1–9.Google Scholar
  265. 265.
    Bessinger UA, Toyka KV, Homberg M, Heininger K, Hohlfeld R, Fateh Moghadam A: Myasthenia gravis: Long-term correlation of binding and bungarotoxin blocking antibodies against acetylcholine receptors with changes in disease severity. Neurology 1983;33:1316–1321.Google Scholar
  266. 266.
    Vernet der Garabedian B, Morel E, Bach JF: Heterogeneity of antibodies directed against the α-bungarotoxin binding site on human acetylcholine receptor and severity of myasthenia gravis. J Neuroimmunol 1986;12:65–74.PubMedGoogle Scholar
  267. 267.
    Pachner AR: Anti-acetylcholine receptor antibodies block bungarotoxin binding to native human acetylcholine receptor on the surface of TE671 cells. Neurology 1989; 39:1057–1061.PubMedGoogle Scholar
  268. 268.
    Vernet der Garabedian B, Bach JF, Morel E: Protective effect of myasthenic immunoglobulins against lethal toxicity of α-bungarotoxin. Clin Exp Immunol 1987;68:130–137.PubMedGoogle Scholar
  269. 269.
    Bender AN, Engel WK, Ringel SP, Daniels MP, Vogel Z: Myasthenia gravis: A serum factor blocking acetylcholine receptors of the human neuromuscular junction. Lancet 1975;i:607–609.Google Scholar
  270. 270.
    Lang B, Richardson G, Rees J: Plasma from myasthenia gravis patients reduces acetylcholine receptor agonist-induced Na+ flux into TE671 cell line. J Neuroimmunol 1988;19:141–148.PubMedGoogle Scholar
  271. 271.
    Verschuuren JJGM, Graas YMF, Theunissen ROM, Yamamoto T, Vincent A, van Breda-Vriesman PJC, De Baets MH: Role of acetylcholine receptor antibody complexes in muscle in experimental autoimmune myasthenia gravis. J Neuroimmunol 1992;36:117–125.PubMedGoogle Scholar
  272. 272.
    Fuchs S: Immunology of the nicotinic acetylcholine receptor. Curr Top Microbiol Immunol 1979;85:1–29.PubMedGoogle Scholar
  273. 273.
    Christadoss P: Immunogenetics of experimental autoimmune myasthenia gravis. Crit Rev Immunol 1989;9:247–378.PubMedGoogle Scholar
  274. 274.
    Tsujihata M, Hazama R, Ishii N, Ide Y, Mori N, Takamori M: Limb muscle endplates in ocular myasthenia gravis: Quantative ultrastructural study. Neurology 1979; 29:654–661.PubMedGoogle Scholar
  275. 275.
    Engel AG, Sahashi K, Fumagalli G: The immunopathology of aquired myasthenia gravis. Ann NY Acad Sci 1981;377:158–174.PubMedGoogle Scholar
  276. 276.
    Pascuzzi RM, Campa JF: lymphorrhage localized to the muscle endplate in myasthenia gravis. Arch Pathol Lab Med 1988;112:934–937.PubMedGoogle Scholar
  277. 277.
    Maselli RA, Richman DP, Wollman RL: Inflammation at the neuromuscular junction in myasthenia gravis. Neurology 1991;41:1497–1504.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Yvo M. F. Graus
    • 1
  • Marc H. De Baets
    • 1
  1. 1.Department of ImmunologyUniversity of LimburgMaastricht(The Netherlands)

Personalised recommendations