Skip to main content
Log in

The intracellular equilibrium thermodynamic and steady-state concentrations of metabolites

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

A new model for the organization and flow of metabolites through a metabolic pathway is presented. The model is based on four major findings. (1) The intracellular concentrations of enzyme sites exceed the concentrations of intermediary metabolites that bind specifically to these sites. (2) The concentration of the excessive enzyme sites in the cell is sufficiently high so that nearly all the cellular intermediary metabolites are enzyme-bound. (3) Enzyme conformations are perturbed by the interactions with substrates and products; the conformations of enzyme-substrate and enzyme-product complexes are different. (4) Two enzymes, catalyzing reactions that are sequential in a metabolic pathway, transfer the common metabolite back and forth via an enzyme-enzyme complex without the intervention of the solvent environment. The model proposes that the enzyme-enzyme recognition is ligand-induced. Conversion of E2S and E2P results in the loss of recognition of E2 by E1 and the concomitant recognition of E2 by E3. This model substantially alters existent views of the bioenergetics and the kinetics of intracellular metabolism. The rates of direct transfer of metabolite from enzyme to enzyme are comparable to the rates of interconversion between substrate and product within an individual enzyme. Consequently, intermediary metabolites are nearly equipartitioned among their high-affinity enzyme sites within a metabolic pathway. Metabolic flux involves the direct transfer of metabolite from enzyme to enzyme via a set of low and nearly equal energy barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srivastava, D. K., and Bernhard, S. A. (1986),Curr. Top. Cell. Reg. 28, 1.

    CAS  Google Scholar 

  2. Srivastava, D. K., and Bernhard, S. A. (1987),Ann. Rev. Biophys. Chem. 16, in press.

  3. Srivastava, D. K., and Bernhard, S. A. (1984,Biochemistry 23, 4538.

    Article  PubMed  CAS  Google Scholar 

  4. Weber, J. P., and Bernhard, S. A. (1982),Biochemistry 21, 4189.

    Article  PubMed  CAS  Google Scholar 

  5. Srivastava, D. K., and Bernhard, S. A. (1985),Biochemistry 24, 623.

    Article  PubMed  CAS  Google Scholar 

  6. Srivastava, D. K., and Bernhard, S. A. (1987),Biochemistry 26, in press.

  7. Janin, J., and Wodak, S. J. (1983),Prog. Biophys. Mol. Biol. 42, 21.

    Article  PubMed  CAS  Google Scholar 

  8. Grau, U. M. (1982), inThe Pyridine Nucleotide Coenzymes (Everse, J., Anderson, B., and You, K-S., eds.), pp. 135–187, Academic, NY.

    Google Scholar 

  9. Morse, D. E., and Horecker, B. L. (1968),Adv. Enz. Relat. Areas Mol. Biol. 31, 125.

    Article  CAS  Google Scholar 

  10. Malhotra, O. P., and Bernhard, S. A. (1968),J. Biol. Chem. 213, 1243.

    Google Scholar 

  11. Albery, W. J., and Knowles, J. R. (1976),Biochemistry 15, 5631.

    Article  PubMed  CAS  Google Scholar 

  12. Srere, P. A. (1967),Science 158, 936.

    Article  PubMed  CAS  Google Scholar 

  13. Bloch, W., MacQuarrie, R. A., and Bernhard, S. A. (1971),J. Biol. Chem. 246, 780.

    PubMed  CAS  Google Scholar 

  14. Srivastava, D. K., and Bernhard, S. A. (1986),Science 234, 1081.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson, C. M., Zucker, F. H. and Steitz, T. A. (1979),Science 204, 375.

    Article  PubMed  CAS  Google Scholar 

  16. Banks, R. D., Blake, C. C. F., Evans, P. R., Haser, R., Rice, D. W., Hardy, G. W., Merrett, M., and Phillips, A. W. (1979),Nature 279, 773.

    Article  PubMed  CAS  Google Scholar 

  17. Pickover, C. A., McKay, D. B., Engelman, D. M., and Steitz, T. A. (1979),Journal Biological Chemistry 254, 11323.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhard, S.A. The intracellular equilibrium thermodynamic and steady-state concentrations of metabolites. Cell Biophysics 12, 119–132 (1988). https://doi.org/10.1007/BF02918354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918354

Keywords

Navigation