Advertisement

Immunologic Research

, Volume 13, Issue 2–3, pp 110–116 | Cite as

Probing T-cell signal transduction pathways with the immunosuppressive drugs, FK-506 and rapamycin

  • John J. Siekierka
Article

Abstract

In addition to their clinical utility in tissue transplantation the immunosuppressive agents FK-506 (Prograf) and rapamycin, have proven to be valuable tools for gaining insight into the biochemistry of T-cell activation. The findings that the protein phosphatase calcineurin and cell cycle control are key elements in T-cell activation and proliferation are the direct result of investigations into the mechanism of action of FK-506 and rapamycin and provide potentially novel therapeutic targets.

Key Words

Immunosuppression Immunophilins T-cell activation Cell cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proceedings of the 1st International Congress on FK-506. Transplant Proc 1991;23:2977–3308.Google Scholar
  2. 2.
    Morris RE: Rapamycins: Antifungal, antitumor, antiproliferative, and immunosuppressive macrolides. Transplant Rev 1992;6:39–87.Google Scholar
  3. 3.
    Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H: FK-506, a novel immunosuppressant isolated from aStreptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 1987; 40:1249–1255.Google Scholar
  4. 4.
    Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H, Ochiai T: FK-506, a novel immunosuppressant isolated fromSteptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo) 1987;40:1256–1265.Google Scholar
  5. 5.
    Vezina C, Kudelski A, Sehgal SN: Rapamycin (AY-22,989), a new antifungal antibiotic. I Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975;28:721–726.Google Scholar
  6. 6.
    Sehgal SN, Baker H, Vezina C: Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 1975;28:727–732.Google Scholar
  7. 7.
    Tocci MJ, Matkovich DA, Collier KA, Kwok P, Dumont F, Lin S, Degudicibus S, Siekierka JJ, Chin J, Hutchinson NI: The immunosuppressant FK-506 selectively inhibits expression of early T-cell activation genes. J Immunol 1989;143:718–726.PubMedGoogle Scholar
  8. 8.
    Crabtree GR, Clipstone NA: Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu Rev Biochem 1994; 63:1045–1083.PubMedCrossRefGoogle Scholar
  9. 9.
    Dumont FJ, Melino MR, Staruch MJ, Koprak SL, Fischer PA, Sigal, NH: The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J Immunol 1990;144:1418–1424.PubMedGoogle Scholar
  10. 10.
    Bierer BE, Mattila PS, Sandaert RF, Herzenberg LA, Burakoff SJ, Crabtree G, Schreiber SL: Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK-506 or rapamycin. Proc Natl Acad Sci USA 1990; 87:9231–9235.PubMedCrossRefGoogle Scholar
  11. 11.
    Sierkierka JJ, Staruch MJ, Hung SH, Sigal NH: FK-506, a potent novel immunosuppressive agent, binds to a cytosolic protein which is distinct from the cyclosporin A-binding protein, cyclophilin. J Immunol 1989;143:1580–1583.Google Scholar
  12. 12.
    Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH: A cytosolic binding protein for the immunosuppressant FK-506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 1989;341:755–757.PubMedCrossRefGoogle Scholar
  13. 13.
    Harding MW, Galat A, Uehling DE, Schreiber SL: A receptor for the immunosuppressant FK-506 is acis-trans peptidyl-prolyl isomerase. Nature 1989;341:758–760.PubMedCrossRefGoogle Scholar
  14. 14.
    Trandinh CH, Pao GM, Saier MH: Structural and evolutionary relationships among the immunophilins: Two ubiquitous families of peptidyl-prolylcis-trans isomerase. FASEB J 1992;6:3410–3420.PubMedGoogle Scholar
  15. 15.
    Takahashi N, Hayano T, Suzuki M: Peptidyl-prolylcis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 1989;37:473–475.CrossRefGoogle Scholar
  16. 16.
    Fischer G, Wittmann LB, Lang K, Kiefhaber T, Schmid FX: Cyclophilin and peptidyl-prolylcis-trans isomerase are probably identical proteins. Nature 1989;337:476–478.PubMedCrossRefGoogle Scholar
  17. 17.
    Bierer BE, Somers PK, Wandless TJ, Burakoff SJ, Schreiber SL: Probing immunosuppressant action with a nonnatural immunophilin ligand. Science 1990;250:556–559.PubMedCrossRefGoogle Scholar
  18. 18.
    Sigal NH, Dumont F, Durette P, Siekierka JJ, Peterson L, Rich DH, Dunlap BE, Staruch MJ, Melino MR, Koprak SL, Williams D, Witzel B, Pisano JM: Is cyclophilin involved in the immunosuppressive and nephrotoxic mechanism of action of cyclosporin A? J Exp Med 1991;173:619–628.PubMedCrossRefGoogle Scholar
  19. 19.
    Tropschug M, Barthelmess I, Neupert W: Sensitivity to cyclosporin A is mediated by cyclophilin inNeurospora crassa andSaccharomyces cerevisiae. Nature 1989;342:953–955.PubMedCrossRefGoogle Scholar
  20. 20.
    Wiederrecht G, Brizuela L, Elliston K, Sigal NH, Siekierka JJ: FKB1 encodes a nonessential FK-506-binding protein inSaccharomyces cerevisiae and contains regions suggesting homology to the cyclophilins. Proc Natl Acad Sci USA 1991; 88:1029–1033.PubMedCrossRefGoogle Scholar
  21. 21.
    Timerman AP, Ogunbumni E, Freund E, Wiederrecht G, Marks AR, Fleischer S: The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. J Biol Chem 1993;268:22992–22999.PubMedGoogle Scholar
  22. 22.
    Stamnes MA, Shieh BH, Chuman L, Harris GL, Zuker CS: The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset ofDrosophila rhodopsins. Cell 1991; 65:219–272.PubMedCrossRefGoogle Scholar
  23. 23.
    Lin CS, Boltz RC, Siekierka JJ, Sigal NH: FK-506 and cyclosporin-A inhibit highly similar signal transduction pathways in human T-lymphocytes. Cell Immunol 1991;133:269–284.PubMedCrossRefGoogle Scholar
  24. 24.
    Friedman J, Weissman I: Two cytoplasmic candidates for immunophilin action are revealed by affinity for a new cyclophilin: One in the presence and one in the absence of CsA. Cell 1991;66:799–806.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL: Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK-506 complexes. Cell 1991;66:807–815.PubMedCrossRefGoogle Scholar
  26. 26.
    Wiederrecht G, Hung S, Chan KH, Marcy A, Martin M, Calaycay J, Boulton D, Sigal N, Kincaid RL, Siekierka JJ: Characterization of high molecular weight FK-506 binding activities reveals a novel FK-506-binding protein as well as a protein complex. J Biol Chem 1972; 267:21753–21760.Google Scholar
  27. 27.
    Sewell TJ, Lam E, Martin MM, Leszyk J, Weidner J, Calaycay J, Griffin P, Williams H, Hung S, Cryan J, Sigal NH, Wiederrecht GJ: Inhibition of calcineurin by a novel FK-506-binding protein. J Biol Chem 1994;269:21094–21102.PubMedGoogle Scholar
  28. 28.
    McCaffrey PG, Perrino BA, Soderling TR, Rao A: NF-ATp, a T lymphocyte DNA-binding protein that is a target for calcineurin and immunosuppressive drugs. J Biol Chem 1993;268:3747–3752.PubMedGoogle Scholar
  29. 29.
    Wiederrecht G, Lam E, Hung S, Martin M, Sigal N: The mechanism of action of FK-506 and cyclosporin A. Ann NY Acad Sci 1994;696:9–19.CrossRefGoogle Scholar
  30. 30.
    Akselband Y, Harding MW, Nelson PA: Rapamycin inhibits spontaneous and fibroblast growth factor-stimulated proliferation of endothelial cells and fibroblasts. Transplant Proc 1991;23:2833–2836.PubMedGoogle Scholar
  31. 31.
    Gregory CR, Huie P, Billingham ME, Morris RE: Rapamycin inhibits arterial intimal thickening caused by both alloimmune and mechanical injury. Transplant 1993;55:1409–1418.CrossRefGoogle Scholar
  32. 32.
    Morice WG, Brunn GJ, Wiederrecht G, Siekierka JJ, Abraham RT: Rapamycin-induced inhibition of p34cdc2 kinase activation is associated with G1/S-phase growth arrest in T lymphocytes. J Biol Chem 1993; 268:3734–3738.PubMedGoogle Scholar
  33. 33.
    Sherr CJ: Mammalian G1 cyclins. Cell 1993;73:159–165.CrossRefGoogle Scholar
  34. 34.
    Furukawa Y, Piwnica-Worms H, Ernst TJ, Kanakura Y, Giffin JD:cdc2 gene expression at the G1 to S transition in human T lymphocytes. Science 1990;250:805–808.PubMedCrossRefGoogle Scholar
  35. 35.
    Morice WG, Wiederrecht G, Brunn GJ, Siekierka JJ, Abraham RT: Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J Biol Chem 1993;268:22737–22745.PubMedGoogle Scholar
  36. 36.
    Albers MW, Williams RT, Brown EJ, Tanaka A, Hall FL, Schreiber SL: FKBP-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin D1-cdk association in early G1 of an osteosarcoma cell line. J Biol Chem 1993;268:22825–22829.PubMedGoogle Scholar
  37. 37.
    Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR: Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 1992;358:70–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Calvo V, Crews CM, Vik TA, Bierer B: Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin. Proc Natl Acat Sci USA 1992; 89:7571–7575.CrossRefGoogle Scholar
  39. 39.
    Lane HA, Fernadex A, Lamb NJC, Thomas G: p70s6k function is essential for G1 progression. Nature 1993; 363:170–172.PubMedCrossRefGoogle Scholar
  40. 40.
    Heitman J, Movva NR, Hall MN: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991;253:905–909.PubMedCrossRefGoogle Scholar
  41. 41.
    Johnson SP, Warner JR: Phosphorylation of theSaccharomyces cerevisiae equivalent of ribosomal protein S6 has no detectable effect of growth. Mol Cell Biol 1987;1338–1345.Google Scholar
  42. 42.
    Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN: Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993;73:585–596.PubMedCrossRefGoogle Scholar
  43. 43.
    Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein target by G1 arresting rapamycin-receptor complex. Nature 1994;369:756–758.PubMedCrossRefGoogle Scholar
  44. 44.
    Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH: RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994;78:35–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Augustine JA, Sutor SL, Abraham RT: Interleukin-2 and polyomavirus middle T antigen-induced modification of phosphatidylinositol 3-kinase activity in activated T lymphocytes. Mol Cell Biol 1991;11:4431–4440.PubMedGoogle Scholar
  46. 46.
    Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J: PDGF- and insulin-dependent pp70s6k activation mediated by phosphatidylinositol-3-OH kinase. Nature 1994; 370:71–75.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • John J. Siekierka
    • 1
  1. 1.Department of Molecular ImmunologyImmunobiology Research InstituteAnnandaleUSA

Personalised recommendations