Immunologic Research

, Volume 6, Issue 3, pp 192–209 | Cite as

CR1 and the cell membrane proteins that bind C3 and C4

A basic and clinical review
  • James G. Wilson
  • Nicolaos A. Andriopoulos
  • Douglas T. Fearon


The covalent binding of C3 and C4 to particles or immune complexes allows their subsequent interaction with cell membrane proteins having affinity for portions of the C3 and C4 molecules. CR1 is a polymorphic glycoprotein comprised of a single peptide chain that has affinity for C3b, iC3b and C4b. CR1 participates in the clearance and processing of circulating immune complexes, in the phagocytosis of C3b and C4b-bearing particles, and as a cofactor for the cleavage of C3b by factor 1. The latter function attenuates complement activation near host cells and generates iC3b and C3d, g that can bind to any of at least five additional membrane proteins. Inherited and acquired abnormalities of CR1 may participate in the pathogenesis of SLE by altering the clearance and processing of circulating immune complexes and perhaps also by affecting the regulation of B lymphocyte growth and maturation.


Systemic Lupus Erythematosus Immune Complex Paroxysmal Nocturnal Hemoglobinuria Complement Receptor Follicular Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fearon, D.T.: Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J. exp. Med.152: 20–30 (1980).PubMedGoogle Scholar
  2. 2.
    Dykman, T.R.; Cole, J.L.; Iida, K.; Atkinson, J.P.: Polymorphism of human erythrocyte C3b/C4b receptor. Proc. natn. Acad. Sci. USA80: 1698–1702 (1983).Google Scholar
  3. 3.
    Wong, W.W.; Wilson, J.G.; Fearon, D.T.: Genetic regulation of a structural polymorphism of human C3b receptor. J. clin. Invest.72: 685–693. (1983).PubMedGoogle Scholar
  4. 4.
    Dykman, T.R.; Hatch, J.A.; Atkinson, J.P.: Polymorphism of the human C3b/C4b receptor. Identification of a third allele and analysis of receptor phenotypes in families and patients with systemic lupus erythematosus. J. exp. Med.159: 691–703 (1984)PubMedGoogle Scholar
  5. 5.
    Dykman, T.R.; Hatch, J.A.; Aqua, M.S.; Atkinson, J.P.: Polymorphism of the C3b/C4b receptor (CR1): characterization of a fourth allele. J. Immun.134: 1787–1789 (1985).PubMedGoogle Scholar
  6. 6.
    Willson, J.G.; Tedder, T.F.; Fearon, D.T.: Characterization of human T lymphocytes that express the C3b receptor. J. Immun.131: 684–689 (1983).Google Scholar
  7. 7.
    Reynes, M.; Aubert, J.P.; Cohen, J.H.M.; Audouin, J.; Tricotet, V.; Diebold, J.; Kazatchkine, M.D.: Human follicular dendritic cells express CR1, CR2 and CR3 complement receptor antigens. J. Immun.135: 2687–2694 (1985).PubMedGoogle Scholar
  8. 8.
    Gelfand, M.C.; Frank, M.M.; Green, I.: A receptor for the third component of complement in the human renal glomerulus. J. exp. Med.142: 1029–1034 (1975).PubMedGoogle Scholar
  9. 9.
    Kazatchkine, M.D.; Fearon, D.T.; Appay, M.D.; Mandet, C.; Bariety, J.: Immunohistochemical study of the human glomerular C3b receptor in normal kidney and in seventy-five cases of renal diseases. J. clin. Invest.69: 900–912 (1982).PubMedGoogle Scholar
  10. 10.
    Emancipator, S.N.; Iida, K.; Nussenwzeig, V.: Gallo, G.R.: Monoclonal antibodies to human complement receptor (CR1) detect defects in glomerular diseases. Clin. Immunol. Immunopathol.27: 170–175 (1983).PubMedGoogle Scholar
  11. 11.
    Gigli, I.; Nelson, R.A.: Complement dependent immune phagocytosis. Expl Cell Res.51: 45–67 (1968).Google Scholar
  12. 12.
    Ehlenberger, A.G.; Nussenzweig, V.: The role of membrane receptors for C3b and C3d in phagocytosis. J. exp. Med.145: 357–371 (1977).PubMedGoogle Scholar
  13. 13.
    Griffin, J.A.; Griffin, F.M.: Augmentation of macrophage complement receptor function in vitro. I. Characterization of the cellular interactions required for the generation of a T lymphocyte product that enhances macrophage complement receptor function. J. exp. Med.150: 653–675 (1979).PubMedGoogle Scholar
  14. 14.
    Newman, S.L.; Musson, R.A.; Henson, P.M.: Development of functional complement receptors during in vitro maturation of human monocytes into macrophages. J. Immun.125: 2236–2244 (1980).PubMedGoogle Scholar
  15. 15.
    Wright, S.D.; Silverstein, S.C.: Tumor-promoting phorbol esters stimulate C3b and C3b' receptormediated phagocytosis in cultured human monocytes. J. exp. Med.156: 1149–1164 (1982).PubMedGoogle Scholar
  16. 16.
    Pommier, C.G.; Inada, S.; Fries, F.; Takahashi, T.; Frank, M.M.; Brown, E.J.: Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. J. exp. Med.157: 1844–1854 (1983).PubMedGoogle Scholar
  17. 17.
    Wright, S.D.; Craigmyle, L.S.; Silverstein, S.C.: Fibronectin and serum amyloid P component stimulate C3b and C3bi-mediated phagocytosis in cultured human monocytes. J. exp. Med.158: 1338–1343 (1983).PubMedGoogle Scholar
  18. 18.
    Cornacoff, J.B.; Hebert, L.A.; Smead, W.L.; Van Aman, M.E.; Birmingham, D.J.; Waxman, F.J.: Primate erythrocyte immune complex clearing mechanism. J. clin. Invest.71: 236–247 (1983).PubMedGoogle Scholar
  19. 19.
    Daha, M.R.; Bloem, A.C.; Ballieux, R.E.: Immunoglobulin production by human peripheral lymphocytes induced by anti-C3 receptor antibodies. J. Immun.132: 1197–1201 (1984).PubMedGoogle Scholar
  20. 20.
    Miyakawa, Y.; Yamada, A.; Kosaka, K.; Tsuda, F.; Kosugi, E.; Mayumi, M.: Detective immune adherence (C3b) receptor on erythrocytes of patients with systemic lupus erythematosus. Lancetii: 493–497 (1981).Google Scholar
  21. 21.
    Taylor, R.P.; Horgan, C.; Buschbacher, R.; Brunner, C.M.; Hess, C.E.; O'Brien, W.M.; Wanebo, H.J.: Decreased complement-mediated binding of antibody/3H-dsDNA immune complexes of the red blood cells of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies. Arthritis Rheum.26: 736–744 (1983).PubMedGoogle Scholar
  22. 22.
    Iida, K.; Mornaghi, R.; Nussenzweig, V.: Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus. J. exp. Med.155: 1427–1438 (1982).PubMedGoogle Scholar
  23. 23.
    Wilson, J.G.; Wong, W.W.; Schur, P.H.; Fearon, D.T.: Mode of inheritance of decreased C3b receptors on erythrocytes of patients with systemic lupus erythematous. New Engl. J. Med.307: 981–986 (1982).PubMedGoogle Scholar
  24. 24.
    Walport, M.J.; Ross, G.D.; Mackworth-Young, C.; Watson, J.V.; Hogg, N.; Lachmann, P.J.: Family studies of erythrocyte complement receptor type 1 levels: reduced levels in patients with SLE are acquired, not inherited. Clin. exp. Immunol.59: 547–554 (1985).PubMedGoogle Scholar
  25. 25.
    Ross, G.D.; Yount, W.J.; Walport, M.J.; Winfield, J.B.; Parker, C.J.; Fuller, C.R.; Taylor, R.P.; Myones, B.L.; Lachmann, P.J.: Acquired loss of erythrocyte (E) CR1 (C3b-receptor) in systemic lupus erythematosus and other diseases with autoantibodies and/or complement activation. J. Immun.135: 2005–2014 (1984).Google Scholar
  26. 26.
    Minota, S.; Terai, C.; Nojima, Y.; Takano, K.; Takai, E.; Miyakawa, Y.; Takaku, F.: Low C3b receptor activity on erythrocytes from patients with systemic lupus erythematosus detected by immune adherence hemaggiutination and radioimmunoassays with monoclonal antibody. Arthritis Rheum.27: 1329–1335 (1984)PubMedGoogle Scholar
  27. 27.
    Wilson, J.G.; Ratnoff, W.D.; Schur, P.H.; Fearon, D.T.: Decreased expression of the C3b/C4b receptor (CR1) and the C3d receptor (CR2) on B lymphocytes and of CR1 on neutrophils of patients with systemic lupus erythematosus. Arthritis Rheum.29: 739–747 (1986).PubMedGoogle Scholar
  28. 28.
    Wong, W.W.; Klickstein, L.B.; Smith, J.A.; Weis, J.H.; Fearon, D.T.: Identification of a partial cDNA clone for the human receptor for complement fragments C3b/C4b. Proc. natn. Acad. Sci. USA82: 7711–7715 (1985).Google Scholar
  29. 29.
    Klickstein, L.B.; Wong, W.W.; Smith, J.A.; Weis, J.H.; Wilson, J.G.; Fearon, D.T.: Human C3b/C4b receptor (CR1): Demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristic of C3/C4 binding proteins. J. exp. Med.165: 1095–1112 (1987).PubMedGoogle Scholar
  30. 30.
    Wong, W.W.; Kennedy, C.A.; Bonaccio, E.T.; Wilson, J.G.; Klickstein, L.B.; Weis, J.H.; Fearon, D.T.: Analysis of multiple restriction fragment length polymorphisms of the gene for the human complement receptor type 1: duplication of genomic sequences occurs in association with a high molecular weight receptor allotype. J. exp. Med.164: 1531–1546 (1986).PubMedGoogle Scholar
  31. 31.
    Wilson, J.G.; Murphy, E.E.; Wong, W.W.: Klickstein, L.B.; Weis, J.H.; Fearon, D.T.: Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erythrocytes. J. exp. Med.164: 50–59 (1986)PubMedGoogle Scholar
  32. 32.
    Cooper, N.R.: The complement system; in Fudenberg, Stites, Stobo, Wells, Basic and clinical immunology 5th ed., pp. 119–131 (Lange Medical Publications, Los Altos 1984).Google Scholar
  33. 33.
    Hugli, T.E.: The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a, and C5a, CRC crit. Rev. Immunol.1: 321–366 (1981).Google Scholar
  34. 34.
    Tack, B.F.: The β-Cys-γ-Glu thiolester bond in human C3, C4, and α2-macroglobulin. Springer Semin. Immunopathol.6: 259–282 (1983).PubMedGoogle Scholar
  35. 35.
    Law, S.K.; Minick, T.M.; Levine, R.P.: Binding reaction between the third human complement protein and small molecules. Biochemistry20: 7457–7463 (1981).PubMedGoogle Scholar
  36. 36.
    Pangburn, M.K.; Schreiber, R.D.; Müller-Eberhard, H.J.: Human complement C3b inactivator: isolation, characterization and demonstration of an absolute requirement for the serum protein β1H for cleavage of C3b and C4b in solution. J. exp. Med.146: 257–270 (1977).PubMedGoogle Scholar
  37. 37.
    Fearon, D.T.: Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from the human erythrocyte membrane. Proc. natn. Acad. Sci. USA76: 5867–5871 (1979).Google Scholar
  38. 38.
    Nagasawa, S.; Stroud, R.M.: Mechanism of the C3b inactivator: requirement for a high molecular weight cofactor (C3b-C4bINA cofactor) and production of a new C3b derivative (C3b). Immunochemistry14: 749–756 (1977).PubMedGoogle Scholar
  39. 39.
    Harrison, R.A.; Lachmann, P.J.: The physiological breakdown of the third component of human complement. Mol. Immunol.17: 9–20 (1980).PubMedGoogle Scholar
  40. 40.
    Sim, E.; Wood, A.B.; Hsiung, L.; Sim, R.B.: Parterns of degradation of human complement fragment, C3b, FEBS Lett.132: 55–60 (1981).PubMedGoogle Scholar
  41. 41.
    Davis, A.E., III; Harrison, R.A.: Structural characterization of factor I-mediated cleavage of the third component of complement. Biochemistry21: 5745–5749 (1982).PubMedGoogle Scholar
  42. 42.
    Ross, G.D.; Lambris, J.D.; Cain, J.A.; Newman, S.L.: Generation of three different fragments of bound C3 with purified factor I or serum. I. Requirements for factor H vs. CR1 cofactor activity. J. Immun.129: 2051–2060 (1982).PubMedGoogle Scholar
  43. 43.
    Medof, M.E.; Prince, G.M.; Mold, C.: Release of soluble immune complexes from immune adherence receptors on human erythrocytes is mediated by C3b inactivator independently of β1H and is accompanied by generation of C3c. Proc. natn. Acad. Sci. USA79: 5047–5051 (1982).Google Scholar
  44. 44.
    Medicus, R.G.; Melamed, J.; Arnaout, M.A.: Role of human factor I and C3b receptor in the cleavage of surface-bound C3bl molecules. Eur. J. Immunol.13: 465–470 (1983).PubMedGoogle Scholar
  45. 45.
    Lachmann, P.J.; Pangburn, M.K.; Oldroyd, R.G.: Breakdown of C3 after complement activation: identification of a new fragment, C3g, using monoclonal antibodies. J. exp. Med.156: 205–216 (1982).PubMedGoogle Scholar
  46. 46.
    Law, S.K.; Fearon, D.T.; Levine, R.P.: Action of the C3b-inactivator on cell-bound C3b. J. Immun.122: 759–765 (1979)PubMedGoogle Scholar
  47. 47.
    Chaplin, H.; Monroe, M.C.; Lachmann, P.J.: Further studies of the C3g component of the α2D fragment of human C3. Clin. exp. Immunol.51: 639–646 (1982).Google Scholar
  48. 48.
    Davis, A.E., III; Harrison, R.A.; Lachmann, P.J.: Physiologic inactivation of fluid phase C3b: isolation and structural analysis of C3c, C3d, g (α2D), and C3g. J. Immun.132: 1960–1966 (1984).PubMedGoogle Scholar
  49. 49.
    Eden, A.; Miller, G.W.; Nussenzweig, V.: Human lymphocytes bear membrane receptors for C3b and C3d. J. clin. Invest.52; 3229–3237 (1973).Google Scholar
  50. 50.
    Ross, G.D.; Polley, M.J.; Rabellino, E.M.; Grey, H.M.: Two different complement receptors on human lymphocytes; one specific for C3b and one specific for C3b inactivator-cleaved C3b. J. exp. Med.138: 798–811 (1973).PubMedGoogle Scholar
  51. 51.
    Iida, K.; Nadler, L.; Nussenzweig, V.: Identification of the membrane receptor for the complement fragment C3d by means of a monoclonal antibody. J. exp. Med.158: 1021–1033 (1983).PubMedGoogle Scholar
  52. 52.
    Weis, J.J.; Tedder, T.F.; Fearor, D.T.: Identification of a 145,000 Mc membrane protein as the C3d receptor (CR2) of human B lymphocytes. Proc. natn. Acad. Sci. USA81: 881–885 (1984).Google Scholar
  53. 53.
    Fingeroth, J.D.; Weis, J.J.; Tedder, T.F.; Strominger, J.L.; Biro, P.A.; Fearon, D.T.: Eostein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. natn. Acad. Sci. USA81: 4510–4514 (1984).Google Scholar
  54. 54.
    Nemerow, G.R.; Wolfert, R.; McNaughton, M.E.; Cooper, N.R.: Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J. Virol.55: 347–351 (1985).PubMedGoogle Scholar
  55. 55.
    Nadler, L.M.; Boyd, A.W.; Park, E.; Anderson, K.C.; Slaughenhoupt, B.; Thorley-Lawson, D.A.; Schlossman, S.F.: The B cell-restricted glycoprotein B2 is the receptor for Epstein-Barr virus; in Reinherz, Haynes, Nadler, Bernstein, Leukocyte typing II, pp. 509–518 (Springer, New York 1986).Google Scholar
  56. 56.
    Frade, R.; Barel, M.; Ehlin-Henriksson, B.; Klein, G.: gp140, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor. Proc. natn. Acad. Sci. USA82: 1490–1493 (1985).Google Scholar
  57. 57.
    Melchers, F.; Erdei, A.; Schulz, T.; Dierich, M.P.: Growth control of activated, synchronized murine B cells by the C3d fragment of human complement. Nature, Lond.317: 264–267 (1985).Google Scholar
  58. 58.
    Frade, R.; Crevon, M.C.; Barel, M.; Vazquez, A.; Krikorian, L.; Charriaut, C.; Galanaud, P.: Enhancement of human B cell proliferation by an antibody to the C3d receptor, the gp 140 molecule. Eur. J. Immunol.15: 73–76 (1985).PubMedGoogle Scholar
  59. 59.
    Changelian, P.S.; Fearon, D.T.: Tissue-specific phosphorylation of complement receptors CR1 and CR2. J. exp. Med.163: 101–115 (1986).PubMedGoogle Scholar
  60. 60.
    Barel, M.; Vazquez, A.; Charriam, C.; Aufredou, M.T.; Galanaud, P.; Frade, R.: gp 140, the C3d/EBV receptor (CR2), is phosphorylated upon in vitro activation of human peripheral B lymphocytes. FEBS Lett.197: 353–356 (1986).PubMedGoogle Scholar
  61. 61.
    Sanchez-Madrid, F.; Nagy, J.A.; Robbins, E.; Simon, P.; Springer, T.A.: A human leukocyte differentiation antigen family with distinet α-subunits and a common β-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bl complement receptor (OKM1/Mac-1), and the p150,95 molecule. J. exp. Med.158: 1785–1803 (1983).PubMedGoogle Scholar
  62. 62.
    Ross, G.D.; Newman, S.L.; Lambris, J.D.; Devery-Pocius, J.E.; Cain, J.A.; Lachmann, P.J.: Generation of three different fragments of bound C3b with purified factor I or serum. J. exp. Med.158: 334–352 (1983).PubMedGoogle Scholar
  63. 63.
    Beller, D.I.; Springer, T.A.; Schreiber, R.D.: Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J. exp. Med.156: 1000–1009 (1982).PubMedGoogle Scholar
  64. 64.
    Wright, S.D.; Rao, P.E.; Van Voorhis, W.C.; Craigmyle, L.S.; Iida, K.; Talle, M.A.; Westberg, E.F.; Goldstein, G.; Silverstein, S.C.: Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc. natn. Acad. Sci. USA80: 5699–5703 (1983).Google Scholar
  65. 65.
    Micklem, K.J.; Sim, R.B.: Isolation of complement-fragment-iC3b-binding proteins by affinity chromatography: the idenfication of p150,95 as an iC3b-binding protein. Biochem. J.231: 233–236 (1985).PubMedGoogle Scholar
  66. 66.
    Inada, S.; Brown, E.J.; Gaither, T.A.; Hammer, C.H.; Takahashi, T.; Frank, M.M.: C3d receptors are expressed on human monocytes after in vitro cultivation. Proc. natn. Acad. Sci. USA80; 2351–2355 (1983).Google Scholar
  67. 67.
    Wright, S.D.; Licht, M.R.; Silverstein, S.C.: The receptor for C3d (CR2) is a homologue of CR3 and LFA-1 (Abstract). Fed. Proc.43: 413 (1984).Google Scholar
  68. 68.
    Crowley, C.A.; Curnutte, J.T.; Rosin, R.E.; Andre-Schwartz, J.; Gallin, J.I.; Klempner, J.I.; Snyderman, R.; Southwick, F.S.; Stossel, T.P.; Babior, B.M.; An inherited abnormality of neutrophil adhesion: its genetic transmission and its association with a missing protein. New Engl. J. Med.302: 1163–1168 (1980).PubMedGoogle Scholar
  69. 69.
    Bowen, T.J.; Ochs, H.D.; Altman, L.C.; Price, T.H.; van Epps, D.E.; Brautigan, D.L.; Rosin, R.E.; Perkins, W.D.; Babior, B.M.; Klebanoff, S.J.; Wedgwood, R.J.: Severe recurrent bacterial infections associated with defective adherence and chemotaxis in two patients with neutrophils deficient in a cell-associated glycoprotein. J. Pediat.101: 932–940 (1982).PubMedGoogle Scholar
  70. 70.
    Arnaout, M.A.; Pitt, J.; Cohen, H.J.; Melamed, J.; Rosen, F.S.; Colten, H.R.: Deficiency of a granulocyte-membrane glycoprotein (GP150) in a boy with recurrent bacterial infections. New Engl. J. Med.306: 693–699 (1982).PubMedGoogle Scholar
  71. 71.
    Dana, N.; Todd, R.F., III; Pitt, J.; Springer, T.A.; Arnaout, M.A.: Deficiency of a surface membrane glycoprotein (Mo1) in man. J. clin. Invest.73: 153–159 (1984).PubMedGoogle Scholar
  72. 72.
    Anderson, D.C.; Schmalstieg, F.C.; Arnaout, M.A.; Kohl, S.; Tosi, M.F.; Dana, N.; Buffone, G.J.; Hughes, B.J.; Brinkley, B.R.; Dickey, W.D.; Abramson, J.S.; Springer, T.; Boxer, L.A.; Hollers, J.M.; Smith, C.W.: Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycopteins (GP138): common relationship to diminished cell adherence. J. clin. Invest.74: 536–551 (198).Google Scholar
  73. 73.
    Vik, D.P.; Fearon, D.T.: Neutrophils express a receptor for iC3b, C3d,g, and C3d that is distinct from CR1, CR2, and CR3. J. Immun.134: 2571–2579 (1985).PubMedGoogle Scholar
  74. 74.
    Vik, D.P.; Fearon, D.T.: Cellular distribution of complement receptor type 4 (CR4): expression on human platelets. J. Immun.138: 254–258 (1987).PubMedGoogle Scholar
  75. 75.
    Cole, J.L.; Housley, G.A., Jr.; Dykman, T.R.; MacDermott, R.P.; Atkinson, J.P.: Identification of an additional class of C3-binding membrane proteins of human peripheral blood leukocytes and cell lines. Proc. natn. Acad. Sci. USA,82: 859–863 (1985).Google Scholar
  76. 76.
    Seya, T.; Turner, J.R.; Atkinson, J.P.: Purification and characterization of a membrane protein (gp45–70) that is a cofactor for cleavage of C3b and C4b. J. exp. Med.163: 837–855 (1986).PubMedGoogle Scholar
  77. 77.
    Schneider, R.J.; Kulczycki, A., Jr.; Law, S.K.; Atkinson, J.P.: Isolation of a biologically active macrophage receptor for the third component of complement. Nature, Lond.290: 789–792 (1981).Google Scholar
  78. 78.
    Wong, W.W.; Fearon, D.T.: p65: a C3b-binding protein on murine cells that shares antigenic determinants with the human C3b receptor (CR1) and is distinct from murine C3b receptor. J. Immun.134: 4048–4056 (1985).PubMedGoogle Scholar
  79. 79.
    Nicholson-Weller, A.; Burge, I.; Fearon, D.T.; Weller, P.F.; Austen, K.F.: Isolation of a human erythrocyte membrane glycoprotein with decayaccelerating activity for C3 convertases of the complement system. J. Immun.129: 184–189 (1982).PubMedGoogle Scholar
  80. 80.
    Nicholson-Weller, A.; March, J.P.; Rosen, C.E.; Sricer, D.B.; Austen, K.F.: Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system. Blood,65: 1237–1244 (1985).PubMedGoogle Scholar
  81. 81.
    Kinoshita, T.; Medof, M.E.; Silber, R.; Nussenzweig, V.: Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J. exp. Med.162: 75–92 (1985).PubMedGoogle Scholar
  82. 82.
    Asch, A.S.; Kinoshita, T.; Jaffe, E.A.; Nussenzweig, V.: Decay accelerating factor is present on cultured human umbilical vein endothelial cells. J. exp. Med.163: 221–226 (1986).PubMedGoogle Scholar
  83. 83.
    Kinoshita, T.; Medof, M.E.; Nussenzweig, V.: Endogenous association of decay-accelerating factor (DAF) with C4b and C3b on cell membranes. J. Immun.136: 3390–3395 (1986).PubMedGoogle Scholar
  84. 84.
    Caras, I.W.; Davitz, M.A.; Rhee, L.; Weddell, G.; Martin, D.W., Jr.; Nussenzweig, V.: Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature, Lond.325: 545–549 (1987).Google Scholar
  85. 85.
    Nicholson-Weller, A.; March, J.P.; Rosenfeld, S.I.; Austen, K.F.: Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc. natn. Acad. Sci. USA,80: 5066–5070 (1983).Google Scholar
  86. 86.
    Pangburn, M.K.; Schreiber, R.D.; Müller-Eberhard, H.J.: Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc. natn. Acad. Sci. USA,80: 5430–5434 (1983).Google Scholar
  87. 87.
    Nicholson-Weller, A.; Spicer, D.B.; Austen, K.F.: Deficiency of the complement regulatory protein, decay-accelerating factor', on membranes of granulocytes, monocytes, and platelets in paroxysmal nocturnal hemoglobinuria. New Engl. J. Med.312: 1091–1097 (1985).PubMedGoogle Scholar
  88. 88.
    Nishioka, K.; Linscott, W.D.: Components of guinea pig complement. I. Separation of a serum fraction essential for immune hemolysis and immune adherence. J. exp. Med.118: 767–793 (1963).PubMedGoogle Scholar
  89. 89.
    Medof, M.E.; Iida, K.; Mold, C.; Nussenzweig, V.: Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes. J. exp. Med.156: 1739–1754 (1982).PubMedGoogle Scholar
  90. 90.
    Cooper, N.R.: Immune adherence by the fourth component of complement. Science165: 396–398 (1969).PubMedGoogle Scholar
  91. 91.
    Dobson, N.J.; Lambris, J.D.; Ross, G.D.: Characteristics of isolated erythrocyte complement receptor type one (CR1, C4b-C3b receptor) and CR1-specific antibodies. J. Immun.126: 693–698 (1981).PubMedGoogle Scholar
  92. 92.
    Gupta, S.; Ross, G.D.; Good, R.A.; Siegal, F.P.: Surface markers of human eosinophils. Blood48: 755–763 (1976).PubMedGoogle Scholar
  93. 93.
    Sher, A.; McIntyre, S.L.: Receptors for C3 on rat peritoneal mast cells. J. Immun.119: 722–725 (1977).PubMedGoogle Scholar
  94. 94.
    Yoon, S.H.; Fearon, D.T.: Characterization of a soluble form of the C3b/C4b receptor (CR1) in human plasma. J. Immun.134: 3332–3338 (1985).PubMedGoogle Scholar
  95. 95.
    Seya, T.; Holers, V.M.; Atkinson, J.P.: Purification and functional analysis of the polymorphic variants of the C3b/C4b receptor (CR1) and comparison with H, C4b-binding protein, (C4bp), and decay accelerating factor (DAF). J. Immun.135: 2661–2667 (1985).PubMedGoogle Scholar
  96. 96.
    Lublin, D.M.; Griffith, R.C.; Atkinson, J.P.: Influence of glycosylation on allelic and cell specific Mr variation, receptor processing and ligand binding of the human complement C3b/C4b receptor. J. biol. Chem.261: 5736–5741 (1986).PubMedGoogle Scholar
  97. 97.
    Dykman, T.R.; Cole, J.L.; Iida, K.; Atkinson, J.P.: Structural heterogeneity of the C3b/C4b receptor (CR1) on human peripheral blood cells. J. exp. Med.157: 2160–2165 (1983).PubMedGoogle Scholar
  98. 98.
    Abrahamson, D.R.; Fearon, D.T.: Endocytosis of the C3b receptor of complement within coated pits in human polymorphonuclear leukocytes and monocytes. Lab. Invest.48: 162–168 (1983).PubMedGoogle Scholar
  99. 99.
    Fearon, D.T.; Collins, L.A.: Increased expression of C3b receptors on polymorphonuclear leukocytes induced by chemotactic factors and by purification prodecures. J. Immun.130: 370–375 (1983).PubMedGoogle Scholar
  100. 100.
    Lee, J.; Hakim, R.M.; Fearon, D.T.: Increased expression of the C3b receptor by neutrophils and complement activation during haemodialysis. Clin. exp. Immunol.56: 205–214 (1984).PubMedGoogle Scholar
  101. 101.
    Fearon, D.T.; Kaneko, I.; Thomson, G.G.: Membrane distribution and adsorptive endocytosis by C3b recptors on human polymorphonuclear leukocytes. J. exp. Med.153: 1615–1628 (1981).PubMedGoogle Scholar
  102. 102.
    Jack, R.M.; Ezzell, R.M.; Hartwig, J.; Fearon, D.T.: Differential interaction of the C3b/C4b receptor and MHC class I with the cytoskeleton of human neutrophils. J. Immun.137: 3996–4003 (1986).PubMedGoogle Scholar
  103. 103.
    Jack, R.M.; Fearon, D.T.: Altered surface distribution of both C3b receptors and Fc receptors on neutrophils induced by anti-C3b receptor or aggregated IgG. J. Immun.132: 3028–3033 (1984).PubMedGoogle Scholar
  104. 104.
    Stossel, T.P.: Contractile proteins in phagocytosis: an example of cell surface-to-cytoplasm communication. Fed. Proc.36: 2181–2184 (1977).PubMedGoogle Scholar
  105. 105.
    Lin, D.C.; Tobin, K.D.; Grumet, M.; Lin, S.: Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation. J Cell Biol.84: 455–460 (1980).PubMedGoogle Scholar
  106. 106.
    Changelian, P.S.; Jack, R.M.; Collins, L.A.; Fearon, D.T.: PMA induces the ligand-independent internalization of CR1 on human neutrophils. J. Immun.134: 1851–1858 (1985).PubMedGoogle Scholar
  107. 107.
    Bohnsack, J.F.; Kleinman, H.K.; Takahashi, T.; O'Shea, J.J.; Brown, E.J.: Cormective tissue proteins and phagocytic cell function. Laminin enhances complement and Fc-mediated phagocytosis by cultured human macrophages. J. exp. Med.161: 912–923 (1985).PubMedGoogle Scholar
  108. 108.
    Castagna, M.; Takai, Y.; Kaibuchi, K.; Sano, K.; Kikkawa, U.; Nishizuka, Y.: Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. biol. Chem.257: 7847–7851 (1982).PubMedGoogle Scholar
  109. 109.
    Pommier, C.G.; O'Shea, J.; Chused, T.; Yancey, K.; Frank, M.M.; Takahashi, T.; Brown, E.J.: Studies on the fibronection receptors of human peripheral blood leukocytes. J exp. Med.159: 137–151 (1984).PubMedGoogle Scholar
  110. 110.
    Medof, M.E.; Oger, J.J.-F.: Competition for immune complexes by red cells in human blood. J. clin. Lab. Immunol.7: 7–13 (1982).PubMedGoogle Scholar
  111. 111.
    Medof, M.E.; Prince, G.M.; Oger, J.J.-F.: Kinetics of interaction of immune complexes with complement receptors on human blood cells: modification of complexes during interaction with red cells. Clin. exp. Immunol.48: 715–725 (1982).PubMedGoogle Scholar
  112. 112.
    Horgan, C.; Taylor, R.P.: Studies on the kinetics of binding of complement-fixing dsDNA/anti-dsDNA immune complexes to the red blood cells of normal individuals and patients with systemic lupus erythematosus. Arthritis Rheum.27: 320–329 (1984).PubMedGoogle Scholar
  113. 113.
    Meryhew, N.L.; Runquist, O.A.: A kinetic analysis of immune-mediated clearance of erythrocytes. J. Immun.126: 2443–2449 (1981).PubMedGoogle Scholar
  114. 114.
    Meryhew, N.L.; Marsden, K.; Runquist, O.A.: The quantitative relationship between clearance rate constants and number of C1-fixing sites. J. Immun.129: 1147–1152 (1982).PubMedGoogle Scholar
  115. 115.
    Kristensen, T.; Wetsel, R.A.; Tack, B.F.: Structural analysis of human complement protein H: homology with C4b binding protein, B2-glycoprotein I, and the Ba fragment of B. J. Immun.136: 3407–3411 (1986).PubMedGoogle Scholar
  116. 116.
    Chung, L.P.; Bentley, D.R.; Reid, K.B.M.: Molecular cloning and characterization of the cDNA coding for C4b-binding protein, a regulatory protein of the classical pathway of the human complement system. Biochem. J.230: 133–141 (1985).PubMedGoogle Scholar
  117. 117.
    Campbell, R.D.; Bentley, D.R.: The structure and genetics of the C2 and factor B genes. Immunol. Rev.87: 19–37 (1985).PubMedGoogle Scholar
  118. 118.
    Morley, B.J.; Campbell, R.D.: Internal homologies of the Ba fragment from human complement component factor B, a class III MHC antigen. Eur. molec. Biol. Org. J.3: 153–157 (1984).Google Scholar
  119. 119.
    Weis, J.J.; Fearon, D.T.; Klickstein, L.B.; Wong, W.W.; Richards, S.A.; de Bruyn Kops, A.; Smith, J.A.; Weis, J.H.: Identification of a partial cDNA clone for the C3d/Epstein-Barr virus receptor of human B lymphocytes: homology with the receptor for fragments C3b and C4b of the third and fourth components of complement. Proc. natn. Acad. Sci. USA83: 5639–5643, (1986).Google Scholar
  120. 120.
    Leonard, W.J.; Depper, J.M.; Kanchisa, M.: Krönke, M.; Peffer, N.J.; Svetlik, P.B.; Sullivan, M.; Green, W.C.: Structure of the human interleukin-2 receptor gene. Science230: 633–639 (1985).PubMedGoogle Scholar
  121. 121.
    Lozier, J.; Takahashi, N.; Putnam, F.W.: Complete amino acid sequence of human plasma β2-glycoprotein L. Proc. natn. Acad. Sci. USA,81: 3640–3644 (1984).Google Scholar
  122. 122.
    Leytus, S.P.; Kurachi K.; Sakariassen, K.S.; Davie, E.W.: Nucleotide sequence of the cDNA coding for human complement Clr. Biochemistry.25: 4855–4863 (1986).PubMedGoogle Scholar
  123. 123.
    Kurosky, A.; Barnett, D.R.; Lee, T.-H.; Touchstone, B.; Hay, R.E.; Arnott, M.S.; Bowman, B.H.; Fitch, W.M.: Covalent structure of human haptoglobin: a serine protease homolog. Proc. natn. Acad. Sci. USA77: 3388–3392 (1980).Google Scholar
  124. 124.
    Ichinose, A.; McMullen, B.A.; Fujikawa, K.; Davie, E.W.: Amino acid sequence of the b subunit of human factor XIII, a protein composed of ten repetitive segments. Biochemistry,25: 4633–4638 (1986).PubMedGoogle Scholar
  125. 125.
    Wilson, J.G.; Wong, W.W.; Murphy, E.E., III; Schur, P.H.; Fearon, D.T.: Deficiency of the C3b/C4b receptor (CR1) of erythrocytes in systemic lupus erythematosus: analysis of the stability of the defect and of a restriction fragment length polymorphism of the CR1 gene. J. Immun.138: 2706–2710 (1987).Google Scholar
  126. 126.
    Rodriguez de Cordoba, S.; Dykman, T.R.; Ginsberg-Fellner, F.; Ercilla, G.; Aqua, M.; Atkinson, J.P.; Rubinstein, P.: Evidence for linkage between the loci coding for the binding protein for the fourth component of human complement (C4BP) and for the C3b/C4b receptor. Proc. natn. Acad. Sci. USA81: 7890–7892 (1984).Google Scholar
  127. 127.
    Rodriguez de Cordoba, S.; Rubinstein, P.: Quantitative variations of the C3b/C4b receptor (CR1) in human erythrocytes are controlled by genes within the regulator of complement activation (RCA) gene cluster. J. exp. Med.164: 1274–1283 (1986).PubMedGoogle Scholar
  128. 128.
    Weis, J.H.; Morton, C.C.; Bruns, G.A.P.; Weis, J.J.; Klickstein, L.B.; Wong, W.W.; Fearon, D.T.: A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32. J. Immun.138: 312–315 (1987).PubMedGoogle Scholar
  129. 129.
    Schwartz, C.D.; Cantor, C.R.: Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell37: 67–75 (1984).PubMedGoogle Scholar
  130. 130.
    Frank, M.M.; Hamburger, M.I.; Lawley, T.J.; Kimberly, R.P.; Plotz, P.H.: Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus. New. Engl. J. Med.300: 518–523 (1979).PubMedGoogle Scholar
  131. 131.
    Lockwood, C.M.; Worlledge, S.; Nicholas, A.; Cotten, C.; Peters, D.K.: Reversal of impaired splenic function in patients with nephritis or vasculitis (or both) by plasma exchange. New Engl. J. Med.300: 524–530 (1979).PubMedGoogle Scholar
  132. 132.
    Kimberly, R.P.; Meryhew, N.L.; Runquist, O.A.: Mononuclear phagocyte function in SLE. I. Bipartite Fc-and complement-dependent dysfunction. J. Immun.137: 91–96 (1986).PubMedGoogle Scholar
  133. 133.
    Meryhew, N.L.; Kimberly, R.P.; Messner, R.P.: Runquist, O.A.: Mononuclear phagocyte system in SLE. II. A kinetic model of immune complex handling in systemic lupus erythematosus. J. Immun.137: 97–102 (1986).PubMedGoogle Scholar
  134. 134.
    Walport, M.J.; Newby, J.C.; Yount, W.J.; Lachmann, P.J.: Loss of complement receptor type 1 (CR1) from erythrocytes (E) transfused into patients with SLE or haemolytic anaemia (Abstract) Complement2: 240: (1985).Google Scholar
  135. 135.
    Wilson, J.G.; Jack, R.M.; Wong, W.W.; Schur, P.H.; Fearon, D.T.: Autoantibody to the C3b/C4b receptor and absence of this receptor from erythrocytes of a patient with systemic lupus erythematosus. J. clin. Invest.76: 182–190 (1985).PubMedGoogle Scholar
  136. 136.
    Schifferli, J.A.; Peters, D.K.: Complement, the immune complex lattice, and the pathophysiology of complement-deficiency syndromes. Lancetii: 957–959 (1983).Google Scholar

Copyright information

© Humana Press Inc. 1987

Authors and Affiliations

  • James G. Wilson
    • 1
    • 2
    • 3
    • 4
  • Nicolaos A. Andriopoulos
    • 1
    • 2
    • 3
    • 4
  • Douglas T. Fearon
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Rheumatology and ImmunologyBrigham and Women's HospitalBostonUSA
  2. 2.Department of MedicineHarvard Medical SchoolBostonUSA
  3. 3.Department of Medicine, Division of RheumatologyHellenic Airforce and V.A. General HospitalAthensGreece
  4. 4.Department of MedicineVeterans Administration Medical CenterJacksonUSA

Personalised recommendations