Advertisement

Vanadium compounds

Their action on alkaline phosphatase activity
  • Ana M. Cortizo
  • Viviana C. Salice
  • Susana B. Etcheverry
Article

Abstract

The direct effect of different vanadium compounds upon alkaline phosphatase (ALP) activity was investigated. Vanadate and vanadyl inhibited both the soluble and particulate ALP activity from UMR.106 cells and from bovine intestinal ALP. We have also shown the inhibition of ALP activity in the soluble fraction of osteoblasts by peroxo and hydroperoxo vanadium compounds. ALP activity in the particulate fraction was not inhibited by these species; nor was the bovine intestinal ALP. Using inhibitors of Tyr-phosphatase (PTPases), the soluble ALP was partially characterized as a PTPase. The major activity in the particulate fraction represents the bone-specific ALP-activity. This study demonstrates that different forms of vanadium are direct inhibitors of ALP activity. This effect is dependent on the enzymatic activity investigated and on the origin of the ALP.

Index Entries

Vanadium alkaline phosphatase tyrosine-phosphatase osteoblast cells bone cells inhibitory effects 

References

  1. 1.
    B. R. Nechay, L. B. Nanninga, P. S. E. Nechay, R. L. Post, J. J. Grantham, I. G. Macara, L. F. Kubena, T. D. Phillips, F. H. Nielsen,Fed. proc.,45, 123 (1986).Google Scholar
  2. 2.
    I. G. Macara, K. Kustin, L. C., Jr. Cantley,Biochim. Biophys. Acta,629, 95 (1980).PubMedGoogle Scholar
  3. 3.
    D. Rehder,Angew. Chem. Int. Ed. Engl,30, 148 (1991).CrossRefGoogle Scholar
  4. 4.
    S. Trudel, M. R. Paquet, S. Grinstein,Biochem. J.,276, 611 (1991).PubMedGoogle Scholar
  5. 5.
    S. Trudel, G. P. Downey, S. Grinstein, M. R. Paquet,Biochem. J.,269, 127 (1990).PubMedGoogle Scholar
  6. 6.
    R. Bouillon,Horm. Res.,36 (suppl 1) 49 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    Y. Yarden, A. Ullrich,Ann. Rev. Biochem.,57, 443 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    N. K. Tonks, C. D. Diltz, and E. H. Fischer,J. Biol. Chem. 263, 6731 (1988).PubMedGoogle Scholar
  9. 9.
    K. L. Guan, and J. E. Dixon,J. Biol. Chem.,266, 17026 (1991).PubMedGoogle Scholar
  10. 10.
    P. Peraldi, S. Hauguel-De Mouzon, and F. Alengrin,Biochem. J. 285, 71 (1992).PubMedGoogle Scholar
  11. 11.
    M. Bradford,Anal. Biochem. 72, 248 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    D. C. Crans, R. L. Bunch, and L. A. Theisen,J. Am. Chem. Soc. 111, 7597 (1989).CrossRefGoogle Scholar
  13. 13.
    P. Cohen,Annu. Rev. Biochem.,58, 453 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    I. G. Fantus, S. Kadota, G. Deragon, B. Foster, and B. I. Posner,Biochemistry 28, 8864 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Stingbrand, and W. H. Fishman,Human Alkaline Phosphatase, New York, AR Liss (1984).Google Scholar
  16. 16.
    K.-H. W. Lau, J. R. Farley, and D. J. Baylink,Biochem. J.,257, 23 (1989).PubMedGoogle Scholar
  17. 17.
    D. R. Bevan, P. Bodlaender, and D. Shemin,J. Biol. Chem.,255, 2030 (1980).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Ana M. Cortizo
    • 1
    • 2
  • Viviana C. Salice
    • 1
  • Susana B. Etcheverry
    • 1
    • 3
  1. 1.Catedra de Bioquimica Patológica, Facultad de Ciencias ExactasUNLP 47 y 115La PlataArgentina
  2. 2.CENEXA, Facultad de Ciencias MédicasUniversidad Nacional de la PlataLa PlataArgentina
  3. 3.Programa QUINOR, Facultad de Ciencias ExactasUniversidad Nacional de la PlataLa PlataArgentina

Personalised recommendations