Biological Trace Element Research

, Volume 41, Issue 3, pp 217–233 | Cite as

Metabolic relevance of selenium in the insectCorcyra cephalonica

Uptake of75Se and subcellular distribution
  • K. Lalitha
  • P. Rani
  • Vasanthy Narayanaswami


Requirement, uptake, and subcellular distribution of Na2 75SeO3 in the larvae of the insectC. cephalonica was investigated. That Se is well tolerated byC. cephalonica upto an added level of 2 ppm in the diet is suggested by the observed increase in body weight, total protein, and succinate dehydrogenase levels. Significant increases in the State 3 respiration ensued with Se supplementation up to 2 ppm in the mitochondrial oxidation of D-glycerol 1-phosphate, succinate and NADH, along with concomitant unaltered State 4 respiration, leading to enhanced RCR values. Maximal uptake of75Se was registered in the larvae maintained on basal diet when subjected to short-term exposure to 0.5 ppm75Se level. When exposure level was further increased up to 20 ppm, the observed decrease in the uptake of75Se suggested that Se status of larvae itself controlled the tissue uptake. Subcellular distribution pattern revealed maximal incorporation of75Se (cpm/g tissue) in the supernatant fraction, whereas, maximal specific75Se activity (cpm/mg protein) was associated with the mitochondrial fraction. Autoradiography of the soluble fractions indicated the presence of single selenoprotein in the larval group with short term 2 ppm75Se exposure. Inherent Se controls both the extent and the nature of distribution of mitochondrial75Se incorporation. Uptake of45Ca by the insect mitochondria was enhanced by dietary Se up to 2 ppm but was unaffected by addition ofin vitro 75Se in the medium. A more fundamental role for Se in the mitochondrial energy metabolism emerges from these studies.

Index Entries

InsectC cephalonica selenium requirement,75Se uptake, insect mitochondria 75Se uptake,45Ca uptake, respiration, Selenium 75Se uptake, subcellular distribution, mitochondrial metabolism 



glutathione peroxidase


N, N, N′, N′-tetramethylenediamine


succinate dehydrogenase


nicotinamide adenine dinucleotide, reduced form


respiratory control ratio


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Schwarz and C. M. Foltz,J. Am. Chem. Soc. 79, 3292 (1957).CrossRefGoogle Scholar
  2. 2.
    K. Schwarz,Fed. Proc. Fed. Am. Soc. Exp. Biol. 24, 58 (1975).Google Scholar
  3. 3.
    P. D. Whanger, P. H. Weswig, J. A. Schmitz and J. E. Oldfield,J. Nutr. 107, 1298 (1977).PubMedGoogle Scholar
  4. 4.
    D. Medina, H. Lane, and C. J. Oborn,Cancer Lett. 15, 301 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    G. N. Schrauzer and D. Ishmael,Ann. Clin. Lab. Sci. 4, 411 (1974).Google Scholar
  6. 6.
    G. N. Schrauzer, D. A. White and C. J. Schneider,Bioinorg. Chem. 6, 265 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    G. N. Schrauzer, J. E. McGinness, and K. Kuenn,Carcinogenesis 1, 199 (1980).CrossRefGoogle Scholar
  8. 8.
    R. F. Burk, R. Whitney, H. Frank and N. Pearson,J. Nutr. 95, 420 (1968).PubMedGoogle Scholar
  9. 9.
    J. N. Thompson and M. L. Scott,J. Nutr. 97, 335 (1969).PubMedGoogle Scholar
  10. 10.
    V. Narayanaswami, R. Padma Bai, Mary Babu and K. Lalitha,Biol. Trace Element. Res. 10, 79 (1986).CrossRefGoogle Scholar
  11. 11.
    J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra,Science 179, 588 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    O. A. Levander, D. P. DeLoach, V. C. Morris and P. B. MoserJ. Nutr. 113, 55 (1983).PubMedGoogle Scholar
  13. 13.
    P. D. Whanger, N. D. Pedersen, and P. H. Weswig,Biochem. Biophys. Res. Commun. 53, 1031 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Behne, H. Hilmert, S. Scheid, H. Gessner and W. Elger,Biochim. Biophys. Acta. 966, 12 (1988).PubMedGoogle Scholar
  15. 15.
    D. Behne, S. Scheid, A. Kyriakopoulos, and H. Hilmert,Biochim. Biophys. Acta. 1033, 219 (1990).PubMedGoogle Scholar
  16. 16.
    T. C. Stadtman, inAnnu. Rev, Biochem. 59, 1990, pp. 111–127.Google Scholar
  17. 17.
    J. Smith and A. Shrift,Comp. Biochem. Physiol. 63B, 39 (1979).Google Scholar
  18. 18.
    V. Narayanaswami, S. Sriman Narayanan, and K. Lalitha,J. Prot. Chem. 5, 4 (1986).Google Scholar
  19. 19.
    T. W. Simmons, I. S. Jamall, and R. A. Lockshin,FEBS Lett. 218, 251 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Ahmad, M. A. Beilstein, and R. S. Pardini,Arch. Insect. Biochem. Biophys. 12, 31 (1989).CrossRefGoogle Scholar
  21. 21.
    T. W. Simmons, I. S. Jamall, and R. A. Lockshin,Comp. Biochem. Physiol. 94B, 323 (1989).Google Scholar
  22. 22.
    T. W. Simmons, I. S. Jamall, and R. A. Lockshin,Biochem. Biophys. Res. Commun. 165, 158 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    M. J. Ihnat,J. Assoc. Off. Anal. Chem. 57, 368 (1974).PubMedGoogle Scholar
  24. 24.
    P. J. Blackshear, inMethods in Enzymology, vol. 104, W. B. Jakoby, ed., 1984, Academic, New York, pp. 237–255.Google Scholar
  25. 25.
    B. Chance and G. R. Williams,Nature 175, 1120 (1955).PubMedCrossRefGoogle Scholar
  26. 26.
    E. C. Slater and W. D. Bonner. Jr.,Biochem. J. 52, 85 (1952).Google Scholar
  27. 27.
    A. L. Lehninger, C. S. Rossi, and J. W. Greenawalt,Biochem. Biophys. Res. Commun. 10, 444 (1963).PubMedCrossRefGoogle Scholar
  28. 28.
    O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar
  29. 29.
    B. Chance and B. Sacktor,Archs. Biochem. Biophys. 76, 509 (1958).CrossRefGoogle Scholar
  30. 30.
    S. G. Van den Berg and E. C. Slater,Biochem. J. 82, 362 (1962).Google Scholar
  31. 31.
    E. Stevenson,Biochem. J. 110, 105 (1968).PubMedGoogle Scholar
  32. 32.
    R. G. Hansford,Biochem. J. 121, 771 (1971).PubMedGoogle Scholar
  33. 33.
    E. Carafoli, R. G. Hansford, B. Sacktor, and A. L. Lehninger,J. Biol. Chem. 246, 964 (1971).PubMedGoogle Scholar
  34. 34.
    E. Carafoli and A. L. Lehninger,Biochem. J. 122, 681 (1971).PubMedGoogle Scholar
  35. 35.
    V. Narayanaswami and K. Lalitha,Biol. Trace Element. Res. 14, 87 (1987).CrossRefGoogle Scholar
  36. 36.
    R. T. Schimke,J. Biol. Chem. 239, 3808 (1964).PubMedGoogle Scholar
  37. 37.
    R. T. Schimke, inAdvances in Enzymology, Vol. 37, A. Meister, ed., 1973, pp. 135–187.Google Scholar
  38. 38.
    K. P. McConnell and D. M. Roth,Biochim. Biophys. Acta. 62, 503 (1962).CrossRefGoogle Scholar
  39. 39.
    H. E. Ganther and C. Concoran,Biochemistry 8, 2557 (1969).PubMedCrossRefGoogle Scholar
  40. 40.
    K. J. Jenkins and M. Hidiroglow,Can. J. Biochem. 49, 468 (1971).PubMedCrossRefGoogle Scholar
  41. 41.
    J. A. Fee and G. Palmer,Biochim. Biophys. Acta. 245, 175 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • K. Lalitha
    • 1
  • P. Rani
    • 1
  • Vasanthy Narayanaswami
    • 2
  1. 1.Department of ChemistryIndian Institute of TechnologyMadrasIndia
  2. 2.University of AlbertaEdmontonCanada

Personalised recommendations