Biological Trace Element Research

, Volume 43, Issue 1, pp 65–71 | Cite as

Use of total Reflection X-ray Fluorescence Analysis in the life sciences

  • Peter Wobrauschek
Methodology of Nuclear Analytical Methods


Total Reflection X-ray Fluorescence Analysis (TXRF) is accepted as a powerful analytical tool. TXRF is basically an energy-dispersive technique with the sample excitated in total reflection geometry. Simultaneous detection of almost all chemical elements and lower limits of detection for medium Z elements in the range of a few hundred fg are achievable at optimized excitation conditions. Aqueous and acidic solutions are the preferred sample types, so a lot of applications in the life sciences are given. For solids and other samples, special preparation techniques are required.

Index Entries

X-ray fluorescence analysis (XRF) energy-dispersive XRF (EDXRF) total reflection XRF (TXRF) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Yoneda and T. Horiuchi,Rev. Sci. Inst. 42, 1069 (1971).CrossRefGoogle Scholar
  2. 2.
    H. Aiginger and P. Wobrauschek,Nucl. Instr. Methods 114, 157 (1974).CrossRefGoogle Scholar
  3. 3.
    P. Wobrauschek and H. Aiginger,Anal. Chem. 47, 852 (1975).CrossRefGoogle Scholar
  4. 4.
    J. Knoth and H. Schwenke,Fresenius Z Anal Chem 291, 200 (1978).CrossRefGoogle Scholar
  5. 5.
    F. Hegedüs, P. Wobrauschek, W. Sommer, R. Ryon, C. Streli, P. Winkler, P. Ferguson, P. Kregsamer, R. Rieder, M. Victoria and A. Horsewell,X-ray spectrometry 22, 277 (1993).CrossRefGoogle Scholar
  6. 6.
    EXTRA II, Atomica, Oberschleißheim, Germany.Google Scholar
  7. 7.
    Rigaku Corporation, 4-15-3, Nishi-Shinjuku-ku, Tokyo 190, Japan.Google Scholar
  8. 8.
    Technos, Neyagawa City, Osaka 572, Japan.Google Scholar
  9. 9.
    P. Wobrauschek, Atominstitut, Vienna.Google Scholar
  10. 10.
    H. Aiginger and P. Wobrauschek,Adv. X-ray Anal. 28, 1 (1985).Google Scholar
  11. 11.
    W. Ladisich, R. Rieder, P. Wobrauschek and H. Aiginger,Nucl. Instr. Methods A330, 501 (1993).CrossRefGoogle Scholar
  12. 12.
    A. Prange,Spectrochim. Acta 44B, 437 (1989).Google Scholar
  13. 13.
    A. von Bohlen, R. Eller, R. Klockenkämper, and G. Tölg,Anal. Chem. 59, 2251 (1987).CrossRefGoogle Scholar
  14. 14.
    R. Pepelnik, B. Erbslöh, W. Michaelis, and A. Prange,Spectrochim. Acta 48B, 223 (1993).Google Scholar
  15. 15.
    R. Klockenkämper and A. VonBohlen,J. Anal. Atom. Spectrom. 7, 273 (1992).CrossRefGoogle Scholar
  16. 16.
    A. Prange, A. Knöchel and W. Michaelis,Anal. Chim. Acta 172, 79 (1985).CrossRefGoogle Scholar
  17. 17.
    W. Ladisich, doctoral thesis, TU-Vienna 1993.Google Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Peter Wobrauschek
    • 1
  1. 1.Atominstitute of the Austrian UniversitiesViennaAustria

Personalised recommendations